第3部
調査後の分析の流れ

ver.2.02

脇田 貴文・浦上 昌則

© 2003- Takafumi Wakita & Masanori Urakami
目次

第III部 調査後の分析の流れと基本 1

1 はじめに 1
2 分析の流れ 3
3 データ入力 5

4 項目レベルの基礎的な確認 7
 4.1 平均・標準偏差を確認する 7
 4.2 度数分布 .. 9
 4.3 まとめ ... 10

5 項目をまとめると 12

6 因子分析（探索的因子分析） 16
 6.1 因子分析のイメージ .. 16
 6.2 因子分析の第1ステップ：因子数の決定 18
 6.3 因子分析の第2ステップ：因子の抽出方法 24
 6.4 因子分析の第3ステップ：因子分析における回転 25

7 下位尺度の構成 36
 7.1 項目尺度得点相関 (I-T 相関) 37
 7.2 信頼性係数 .. 38
 7.3 妥当性 ... 40
 7.4 因子間の相関 .. 42

8 下位尺度の確定 43

9 分析例 44
 9.1 項目レベルの基礎的な確認 45
<table>
<thead>
<tr>
<th>章節</th>
<th>節目</th>
<th>題目</th>
<th>頁碼</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td>項目間相関を見てみる</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>9.3</td>
<td>因子分析</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>9.4</td>
<td>項目のビックアップ</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>9.5</td>
<td>信頼性の確認</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>引用文献・参考文献・おすすめ文献など</td>
<td>53</td>
<td></td>
</tr>
</tbody>
</table>
第 III 部
調査後の分析の流れと基本

第 3 部では、調査後の話をします。ここでは、尺度構成の手順や、因子分析について扱います。

1 はじめに

やはり、このことは最初に触れておかなければならないでしょう。

あなたの研究の仮説は何だったのですか？

このことは、分析の最初から最後までずっと頭のどこかに置いておいてください。

さて第 3 部では、「ものさし作り」の手順について紹介していきます。モノの長さを測ることは簡単です。ものさしをあてて、目盛りを読み取ればいいのです。しかし、心理学などが測定しようとするものは目に見えません。この見えないモノを測るものさしが新たに必要になるのです。ものさしが完成して初めて、測りたかったものの程度を測定できるのです。そして、そこで測定された値を使って研究の仮説検証をすすめていきます。

なお、今回の文章の中には「それは研究者が決めることです」とか「研究者が判断することなので」といった文章が何回か出てきます。研究の手順の中には、t 検定の結果など、研究者がどうあがいてもその結果が示すものは一つであり、意図的な操作をしてはならないものがあります。しかし他方で、どのような基準を利用するか、何を重要視するかが研究者の判断にゆだねられるものもあります。そこでは研究者が何らかの判断を下さなければならないのです。

これは、研究者が責任をすべて引き受けなければならないことを意味します。もしかすると、あなたの判断一つで研究が実り豊かなものになったり、そうでないものになったりする可能性があるのです（そこまで極端な場合は少ないでしょうが）。また、「なぜそんな判断したのですか？」という問いには、自信をもって根拠と理由を述べられなければならな
いのです。そのためにも、しっかりと知識を身に付けておいてください。

ここでは、当然、調査をする前段階で何を明らかにしたいか、そのために必要な情報
(年齢・性別など) は何か、必要な測定変数1)は何か、については十分な検討がされており、そのデータが得られているとして話を進めます。

おそらく、多くの人が質問紙を作成する段階で上記のことについて十分に考えていると思います。しかし、それだけでなく、できれば(絶対に!)以下のことまで考えておいてください。

1. 何を問題にするのか
 (下位集団間の差？, 潜在変数何が影響するのか？, 潜在変数間の関係？, etc.)
2. そのためにどのような分析手法を用いることができるのか
 (因子分析, t 検定, 各種の分散分析, etc.)

質問紙を作成する段階で、これらのことをよく考えていないと後々大変なことになります（実際によくそうなっています・・・）。

1) 自尊感情・共感性など
2 分析の流れ

最初に、調査によりデータを得てから、項目分析、因子分析などを経て、最終的な尺度の確定に至るまでの大きな分析の流れを書いてみます。

既存の尺度を用いている場合、あなたが求めている因子構造は、先行研究で見いだされているものと一致するということでしょう。例えば、その尺度を用いた先行研究で「精神的自律」と「行動的自律」という2因子が見いだされていた。私は、その2つの因子と親子関係の良好さとの関係を研究したい。それには先行研究と同様な2因子構造じゃなくては困る、というような状況です。

因子分析についての知識を持っている人（ちゃんと第1部を勉強した人）ならわかると思いますが、このようなときは2因子からなる構造が、今回収集したデータにも当てはまるかを「確認」したいのですから、手法としては確認的因子分析を利用することとなります。図の中の分かれ道の左側ですね。

本格的にこれをやろうとすると、共分散構造分析を利用した因子分析や、プロクラステス法といった手法を用いなければなりません。しかしSPSSではこれらを行うことが難しいのです。なので次善（？）の策を考えます（もちろん、自分で勉強して確認的因子分析をすることの方が望ましいかもしれません）。もし、その因子構造が安定しており、今回収集したデータにも当てはまるものであれば、2因子を指定した因子分析（例えば、先行研究で用いられている方法を採用する）の結果は、先行研究の結果と類似した2つの因子を示すはずです。この結果をもって「妥当な結果」とし、下位尺度得点の算出に進むことができます。

しかし、必ずしも先行研究とピッタリ同じ結果になるとは限りません。というのは、そのようなことは生まれたと言ってもいいでしょう。どこか違っているということが多いですし、構造が大きく変わってしまったということもよくあります。大きく変わってしまったような時には、確認をあきらめた方がよいかもしれません。こうなると、仮説自体の組み直しも必要になってきます。これは、卒論など縛め切りの決まっているときには大騒ぎの原因にもなります。時間に余裕を持って研究をスタートさせることや、先行研究での因子分析の結果をじっくりとみて、しっかりと予測を立てて利用することが必要です。

既存の尺度（先行研究の結果）を用いず、自ら尺度を作成する場合には、図の右側にある探索的因子分析を用いて尺度構成を進めます。ここでは、こちらを中心に話を進めます。
データを入力・変数名等をつけて分析の準備をする

各項目ごとに記述統計を算出し検討する

各項目間の相関を検討する

因子分析を行う

因子数を決定する

(決定した因子数)で再度因子分析を行う
or
信頼性係数を算出する

項目のスクリーニング

下位尺度を構成する

下位尺度ごとに尺度得点を算出する

信頼性係数αを算出する

さまざまな分析

Figure 1 分析の流れチャート
補足：論文等における因子分析結果の見方　卒論等の作成に向けた研究では先行研究の尺度を用いることが多いと思いますが、その際に留意すべき点に触れておきます（もう少し遅れかもしれないですね）。当然ですが、自分の研究でどの尺度を用いるかということは、非常に重要で結果を大きく左右します。

このように先行研究で作成されている尺度を使った研究をしている場合によく尋ねられるのは、自分で得たデータで因子分析をした結果が先行研究の結果とは違ったものになり、どう解釈してよいのかわからないというものです。これは尺度の選択の時点に原因のひとつがあると考えられます。先行研究の結果と同じような因子構造を求める場合には、尺度を選ぶ時点でできるだけ良い尺度を選ぶ必要があるのです。

では、どのような尺度が良い尺度といえるのでしょうか（ここで言う「良い」は、因子構造が安定していて、異なる集団からデータを集めても、その因子が抽出できるという観点からの「良い」です。普遍的な意味での「良い」ではないことに注意。）。一言で言えば、因子構造がはっきりしている尺度が良い尺度である可能性が高いといえます。先行研究における説明率や信頼性係数をみることも重要ですが、このような観点からは因子構造を検討することが重要になります。

たとえば、論文に載っている因子負荷量を見たときに、複数の因子に同程度の負荷量を持つような項目が多い尺度は注意が必要です。複数の因子に負荷量を持つということは、その項目が複数の次元にまたがって影響しているということになります(2)。そのような項目は、中途半端な位置にある項目ということもできます。一つの因子にのみ高い負荷量を示し、他の因子には 0 に近い負荷量を示すような項目が多い場合、因子構造が安定していると考えられます。複数の因子に高い負荷量を示すような項目が多い尺度を用いた場合には、自分でデータを集めて分析をしても先行研究と同じ結果が得られる確率は低いと考えたほうが良いでしょう。

3 データ入力

まずは紙に書かれた回答を、PC が計算できるように電子情報にしてやる必要があります。直接 SPSS で入力してもかまいませんし、EXCEL で入力して SPSS のファイルに変

(2) 説明のためこのような表現をしましたが、因子分析の概念的には、「その項目の背後には複数の因子がある」、つまり「複数の因子がその項目に影響している」と考えるべきでしょう。
お手数でもかまいません。このあたりは「SPSS お助けマニュアル」を参照してください。

なお入力後に、必ずやっておいてほしいことがあります。それは正確に入力されているかどうかを確認することです。例えば 70 項目からなる質問紙を 150 名に実施した場合、全部で 1050 の数字を入力する必要があります。入力ミスは 1050 のうち 0 でなければならないのです。みなさんが論文を読むときに、「データの入力にミスがあるかも」なんてことは考えないと思います。このあたりまえのことは、みなさんが作成する論文についても同じです。ミスがあってはならないのです。これは、後ではどうすることもできません。必ず確認しておいてください。

なお、逆転項目については、この段階で逆転しておく必要はありません。逆転させるのは因子分析の後、信頼性の検討の前で問題ありません。

補足 さて、どうやって確認すればいいのでしょうか。

確認の必要性はあるかわかり続けていても、実際やるとなると面倒です。これを、ある程度「楽に」確かめたいですね。ここでは、そのヒントになるように、今までに試した方法をいくつか挙げておきます。（方法の詳細はここでは触れませんが、それを U 先生に問い合わせして下さいね。）

1. 一度入力したものをプリントアウトして、質問紙と出力結果を見比べて確かめる。
2. EXCEL の知識がある人向けの方法です。1 回目を EXCEL に入力する (シート 1)。そして、もう一度別の EXCEL シートに一回目と同様に入力する (シート 2)。そして、シート 3 でシート 1 - シート 2 をする。その計算結果が全て 0 であれば、間違いはないということです。
3. さらに、高度 (?) な方法です。高機能エディタ (秀丸エディタ・QX エディタなど) の「テキスト比較」の機能を使う。
4. テキスト比較専用のソフトを使う (テキストコンペアなど)。

経験的には、目で確認するという作業はそれなりに大変です。確認の時点でも間違える可能性があります。ある程度入力のスピードがあれば、2 回入力して、2 番目、3 番目の方法を使った方が確実でしょう。こういった作業を効率よくやるためには、試行錯誤が必要なので自分でいろいろ試してみてください。

3) どうしても 3 番目、4 番目の方法が知りたい人は脳田を捕まえてください。
4) インターネットでダウンロード可能
4 項目レベルの基礎的な確認

すべてのデータが正確に入力されていることを確認できたら、次にこの段階へと進みます。

4.1 平均・標準偏差を確認する

まず最も基本的な指標である平均値と標準偏差を計算します。この2つは最低限確認しておく必要があります。

さて、平均値、標準偏差を項目ごとに算出することはSPSSを使うと簡単にできると思います。問題は、その結果から平均値、標準偏差をどのように解釈していくのかという点です。

簡単に言えば、平均値、標準偏差の値が適切かどうかという点から見ていきます。ここでの適切な点はどの程度の値をさすのでしょうか。平均値は3.0、標準偏差は1.5というような絶対的な基準がどこかにあって、それに照らし合わせて良い項目もしくは悪い項目を判定するということはできません。そのような絶対的な基準はなく、この判断は研究者に委ねられることになります。この段階での結果には、それほど神経質になる必要はありませんが、どこに注目して何を確認しておくかを押さえておくことは重要です。

具体的に考えていきましょう。例えば、5件法の場合だと1つの項目の得点分布は1点から5点になります（等間隔であればよいので、2、4、6、8、10点とコーディングしても問題ないのですが、ここは常識的に）。そのときに、次のような項目A、項目Bの結果が得られたとします。

<table>
<thead>
<tr>
<th></th>
<th>平均</th>
<th>標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>項目A</td>
<td>4.0</td>
<td>0.5</td>
</tr>
<tr>
<td>項目B</td>
<td>3.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

この場合、項目Bと項目Aでは、項目Bのほうがよい項目だと見なすことができます。さて、これは何を根拠にいっているのでしょうか。

項目Aは3.5から4.5の間に70パーセント近くが含まれることになり、3から5の間
に95パーセント近くの回答が集まっているであろうことがわかります（この説明がわからない人は、次の「復習」の欄を先に読んでおいてください）。つまり、この項目に関しても、ほとんど「4」のカテゴリに反応していることが推測できます。そして、1や2に回答する人はほとんどない項目と考えられるのです。

これに比べて、項目Bは回答がバラついていると考えられます。項目Bは2.0から4.0の間に70パーセント近くが含まれ、1.0や5.0にもある程度の回答数があるだろうことが推測できます。つまりは、1から5までのすべてのカテゴリに反応があるだろうと考えられるのです。平均と標準偏差だけでもこのくらいのことまでは把握することができます。

つまりは、回答がバラつく項目の方がよい項目の特徴を持っているといえるのです。なぜかといえば（あえて言うまでもないとは思いますが）、解答者のほとんどが同じ反応をするということから、項目の存在意義が疑われるからです。研究では、「差があること」や「関連性があること（Xという特性の弱い人は、Yという特徴も弱い、Xという特徴の強い人は、Yという特徴も強い）」といったことを明らかにしようとします。つまり個人差がないと研究できないのです。そんな時に、個人差を検出できない項目（つまりほとんどの人が同じ回答をするような項目）を使っても意味がないのです。

ちなみに、平均値4.5、標準偏差1.0という項目Cがあったとしましょう。この項目ではどのような回答の分布になっていると思いますか？
4.2 度数分布

ここで、（先の「復習」も参考に）よく考えると、平均値と標準偏差のみで上述のような判断ができるのは、回答が正規分布をしている場合のみです。逆に言えば、回答が正規分布をしているか、そうでないかを知らないままに、平均値と標準偏差から分布状況を推測することは、間違った判断につながる危険性を含みます。

例えば、5 件法で 2 番目と 4 番目に回答が集中していた場合、双峰型の分布となり平均と標準偏差のみでは分布を推測することができません。となれば、度数分布表やグラフ
を書いて確かめる必要があります（度数の分布の状況をグラフ化したものをヒストグラムと呼びます）。

![Figure 2 単峰型と双峰型](image)

ちなみに、さまざまな分析をする際には、基本的に単峰型の分布が望ましいといえます。しかし、だからといって双峰型はまったくダメかというと、そういうわけでもありません。回答の分布が双峰型になっているということは、その項目に対する回答が2極化するということなので、分類するという目的からいえば識別する力が強いといえます。記述統計量を扱う際にはそれほど問題にはならないでしょう。

とはいえ、回答分布が双峰型の場合には、正規分布を仮定するような分析（共分散構造分析など）を行ったときには影響が出る可能性があります。また、因子分析をした際には因子負荷量が小さくなる可能性もあります。

「だから、いいのか悪いのかどっちなんだ？」といわれると、そこまで神経質になる必要はないというのも事実です。なぜなら、項目ごとで分析をすることはそれほどないからです（逆に言えば、項目単位で分析するときには要注意です）。たとえば、1項目に関して分散分析を行うということはないでしょう。さまざまな分析は、基本的に尺度（各項目の得点を合計した尺度得点）単位で行うので、項目を合計したときに合計の点数が正規分布に近いものであれば、その中に双峰型の回答分布をするような項目が入っていても結果に大きな影響を与えることは少ないでしょう。ただし、下位尺度に含まれるすべての項目が双峰型の分布になっているような場合は、合計も正規分布をしない可能性があるので注意が必要です。

4.3 まとめ

まずは平均値、標準偏差の算出とヒストグラムの作成は、どちらを先に行ってもかまいませんが、1つのセットだと覚えておいてください。しかし、項目レベルでいくつか詳細に
検討したとしても、この段階で項目に関する評価を下すことはできません。実際には、平均が極端に低いもしくは高い項目や、バラつきが極めて小さい項目、双峰型の回答分布をする項目などに、ここで要注意マークをつけておいて、後に示す項目間相関や因子負荷量、信頼性係数の結果との合わせ技で採否を決めることが一般的でしょう。後の分析で変な結果（「予想外の」とか「納得できない」、「理屈に合わない」というような意味）が出たときなどに、まずその項目を疑ってみるということになります。
5 項目をまとめる

続いて，尺度作成に向けた分析の中核に進みます。かなり基本的なところから説明しますので，復習と思って読み進めてください。

そもそも我々が尺度を使って測定しようとしているものは，目に見えないものです。この目に見えないものを少し難しい（？）言葉でいうと構成概念といいます。そして構成概念を代表する変数を潜在変数といいます。一方，項目に対する反応は目に見えるので顕在変数といわれます。つまり，潜在変数は目に見えないので，目に見える顕在変数を用いて何とか測定しようというのが心理測定の目的の1つなのです。

Figure 3 に潜在変数と顕在変数の関係を示してみました6)。潜在変数である「言語的能力」「数理的能力」「芸術的能力」というものは目に見えないので，それらを直接的に代表する客観的指標は存在しません。しかし，数学の点数や英語の点数といったものは点数として目に見える形で示されます。したがって，潜在変数である言語的能力を推し量るのに，言語的能力が強く反映されていると考えられる顕在変数「英語の点数」と「国語の点数」を用いるのです。

なお，矢印の方向もここではとりあえず無視しておいてください7)

![Figure 3: 潜在変数と顕在変数](image)

6) あくまで例です。内容は無視してください。
7) ちなみに因子分析はこのようなイメージです。
通常、項目を作成する段階では、「どのような構成概念を測定するか」ということを念頭に項目が作られます。みなさんも、「何を測定するのか」ということをじっくりと考えて項目を作成したことと思います。つまり構成概念が先にあって、そこから項目が作られるという流れです。ここで逆を考えてみましょう。逆とは、「項目によって構成概念が作られる」ということになります。なぜわざわざ逆を考えるのか、わからないかもしれませんがね。少し説明すると、たしかに項目を作成する段階では作成者は構成概念を念頭に項目を作成するのですが、いったん項目を確定してしまうと、それで測定されるものは、利用された項目によって限定されてしまうからなのです。

例えば、先の図では「言語的能力」という構成概念を測定するために、英語と国語という問題（項目）の点数を用いています。確かに、英語と国語のそれぞれは「言語的能力」が反映される問題といえるでしょう。この点では間違った問題とはいえません。しかしこれらの問題では、中国語の力は測定されていません。ということは、これらの問題群で測定できる「言語的能力」は少なくとも中国語は除いた言語の能力ということになってしまうのです。「項目により構成概念が定義される」といわれることがありますが、これは決してオーバーな表現ではないでしょう。

だらだらと言ってきましたが、図にすると Figure4 のようなイメージです。

![Figure 4 構成概念と項目の関係](image)

この図では，8 角形が示している領域が測定したい構成概念の領域をあらわしているとします。そして、項目 1 から 4 の楕円がその項目により測定される領域であるとします。つまり，8 角形の構成概念を想定して項目を作った結果，楕円で示されている領域が測定されていることになり，特に楕円が重なっている部分に関してはよく測定することができるのであると考えられます。逆に間隙の部分は，今回用意した項目では測定できていない部分なのです。

13
さて、本題にもとりましょう。ここでは項目をまとめて尺度を確定していくプロセスの話をしようとしていたのです。せっかくですので、Figure 3, Figure 4のようなイメージを用いてもう少し考えてみましょう。

測定したいものは構成概念なのです。そしてそのために項目を作成しました。作成した項目間の相関係数を算出した結果、例えば項目 A と項目 B の相関が 1.0 だったとします。これを先ほどの図のようなイメージで考えると項目 A と項目 B の荷重がぴったり重なる状態であるといえます。続いて、項目 A と項目 C の相関は .00 だったとします。これは、二つの荷重がまったく重ならない状態を示しています。

Figure 4のようなイメージで考えていくと、一つの8角形の中に重ならない2つの荷重を描くことは可能です。しかし同じ構成概念を測定しようとしている時に、全く重ならないない荷重が存在してもよいでしょうか。そこで Figure 3のようなイメージも合わせて考えてみます。項目 A と項目 C はある一つの構成概念を測定しようとして用意されました。ということは、その構成概念からともに影響を受けてているはずなのです。その構成概念的傾向を強く持っている人は、項目 A の得点が高くなり、項目 C の得点も高くなるはずが、それであれば、項目 A と項目 C の相関が .00 であるはずがないことになります。つまり相関が .00 であった場合、同じ構成概念を測定している項目とはいえないと結論するのが妥当でしょう。

では、相関が .40 の場合だとうどうなるでしょうか・・・

「項目により構成概念が定義される」といいましたが、この観点から見ると項目どうしの相関が高い場合は、狭い範囲しか測定できていない可能性がありますが、同じポイントを何重にも測定しているといえます。一方、ほとんど相関がない場合は、広い範囲を測定しているともいえますが、異った構成概念を測定している可能性があるのです。

以上のような考え方から、項目を整理し、測定したいと思っていた構成概念を測定できる項目群、つまりは尺度を構成していくのです。項目間の相関係数は、これを考えていくうえでの指標となります。
ある尺度における各項目間の相関係数を算出すると、Table 1 のようになりました。なお、無相関の判定の有意確率は省略しております。
わずか 20 項目しかないのに、Table 1 から項目相互の関連性を見つけ出すことは困難ではないでしょうか。そこで因子分析という手法が登場するのです。

Table 1 各項目間相関

| | A1X | A2X | A3X | A4X | A5X | A6X | A7X | A8X | A9X | A10X | A11X | A12X | A13X | A14X | A15X | A16X | A17X | A18X | A19X | A20X |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|------|
| A1X | -0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| A2X | -0.00 | -0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| A3X | -0.00 | -0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| A4X | -0.00 | -0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| A5X | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| A6X | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| A7X | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| A8X | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| A9X | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| A10X | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| A11X | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| A12X | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| A13X | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| A14X | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| A15X | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 |
| A16X | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
| A17X | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 |
| A18X | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
| A19X | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| A20X | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

8) 少し話がそれますが、相関を求めた際に出てくる有意確率は、データ数が多ければ多いほど、弱い相関でも有意となって出てきます。ここでは 200 名を超えているデータなので、相関が有意かどうかを検討することは意味がありません。
9) Table 1 の X と Y はここでは気にしないでください。
6 因子分析（探索的因子分析）

因子分析には，探索的因子分析・確認的因子分析がありますが，最初にも書いたように，
ここでは探索的因子分析を扱います。

因子分析とは，

観測される多数の変数間の相関関係を分析して，それらの変数の背後に潜む潜在
因子を探求しようとする多変量解析の手法...

であるといわれています（柳井他，1990）。

実際には，SPSS で因子分析を行えば即座に結果がでてくるので，因子分析が何を行っ
ているかという中身を知る必要はないと知れませんが，その原理を押さえておくことは
必要です。先の引用もあるように，因子分析は相関（行列）を基にしています。具体的
には，先ほど見た Table 1 です。

実際に何が行われているかを見ていきましょう。

6.1 因子分析のイメージ

前節で扱った Table 1 に少し細工をしてみます。相関が絶対値で .20 よりも大きい値を
示しているセルに色をつけます。その結果を Table 2 に示します。

| AIX |
|-----|
| 1,000 |
| AIX |
| 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 |
| AIX |
| 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 |
| AIX |
| 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 |
| AIX |
| 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 | 0.632 | 0.140 | -0.340 | 1.000 |

Table 2 各項目間相関 細工その 1

16
これは、まだわかりにくいのでさらに細工をします。相互に関連性の強い項目を集めています（ここでは、2つの下位尺度（X と Y）ということがわかっているので、それぞれ Y に含まれる項目、X に含まれる項目という具合にまとめています）。すると、次のようにになります。

	1D2	1D3	1D4	1D5	1D6	1D7	1D8	1D9	1D10	1D11	1D12	1D13	1D14	1D15	1D16	1D17	1D18	1D19	1D20	1D21	1D22	1D23	1D24					
1D2	1.00																											
1D3		0.00	1.00																									
1D4			0.00	0.00	1.00																							
1D5				0.06	0.26	0.26	1.00																					
1D6					0.00	0.00	0.00	0.00	1.00																			
1D7						0.00	0.00	0.00	0.00	0.00	1.00																	
1D8							0.00	0.00	0.00	0.00	0.00	0.00	1.00															
1D9								0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00													
1D10									0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00											
1D11										0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	1.00								
1D12											0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00						
1D13												0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
1D14													0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
1D15														0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
1D16															0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
1D17																0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
1D18																	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
1D19																		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
1D20																			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
1D21																				0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
1D22																					0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1D23																						0.00	0.00	0.00	0.00	0.00	0.00	
1D24																							0.00	0.00	0.00	0.00	0.00	0.00

どうでしょうか？ 見事に左上と右下に .20 以上の相関を持つものが少なく集まっています。このように、強い相関関係にある項目を集めるというのが因子分析のイメージです。そして、関係の深い（相関をもつ）項目群があるということは、その背後に因子というものがあることが考えられます。それが特定の項目群に影響しているため、それらの項目群の間で相関が認められると言える_CLK_（Figure 3 のイメージです）。項目と構成概念の関係を思い出してみてください。何となく、つながりませんか？ 因子が構成概念に相当します。
6.2 因子分析の第1ステップ：因子数の決定

因子分析において、因子数の決定は非常に重要です。それは、いくつかの因子を仮定するかによって因子分析の結果が異なり、さらにはその後の分析結果までも左右することになるからです。

さて、ここで？？となっている人が出てくるかもしれません。
「私はあるひとつの構成概念を測定するために項目を作成したのだ。だから因子はひとつのはずです。因子分析なんて必要なの？」

至極もっともな疑問です。そんなときに、因子が2つあると考えることが妥当だなんてことを示すような結果が出てきたら大変です。しかし、「私がひとつの構成概念だと思っているのだから、因子はひとつなんだ！」と言い切ることは無謀です。

このあたりのことを一度整理してみましょう。心理測定は、目に見えない構成概念を測定しようとすることが多いのです。それは「恋心」といったものであったり、「能力」であったり、「自律性」であったりと様々です。しかし、ひとつの構成概念として表現できるからと言って、因子もひとつだとは限りません。ひとつの構成概念はいくつかの下位概念から成り立っているものである可能性もあるのです。もしそうであれば、ひとつの構成概念であっても、複数の因子から成っていることになります。

因子分析は、構成概念の構造を把握するためにも使えます。先の疑問のように、ひとつの構成概念を測定していると予測している場合でも、その確認の意味も含めて因子分析をやってみることがいいでしょう。

さて本題に戻ります。一般に、因子数を決定する基準には以下のものが使われますが、最終的には、研究者の判断に委ねられます。
固有値（スクリーブロット）次の表は SPSS の出力結果です。先に相関係数を算出した 20 項目について因子分析をした結果です。
「説明された分散の合計」で見るべき箇所は，初期の固有値の合計の行です。この例では，4.605，3.347，2.007，1.221，0.987，0.913・・・となっています。そして，Figure 5 に示すスクリーブロットはこの値を用いています。その横の説明率とは，その因子を全体の何パーセントを説明できるかを示す値で，大きいほうが良いとされる数値です。
スクリーブロットの判断基準は，固有値が急激に落ち込むところまでを因子として採用するというもののです。ここでは，3 因子を採用するのが妥当な判断であるといえます。

Table 4 SPSS 出力：説明された分散の合計

<table>
<thead>
<tr>
<th>因子</th>
<th>因子特性の分散</th>
<th>因子特性の累積百分率</th>
<th>因子特性の累積百分率</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.605</td>
<td>23.24%</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>3.347</td>
<td>16.72%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.007</td>
<td>10.06%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.221</td>
<td>6.11%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.987</td>
<td>5.00%</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.913</td>
<td>4.60%</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.573</td>
<td>3.00%</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.513</td>
<td>2.60%</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.487</td>
<td>2.40%</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.462</td>
<td>2.31%</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.452</td>
<td>2.20%</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.438</td>
<td>2.15%</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.350</td>
<td>1.80%</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.342</td>
<td>1.70%</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.417</td>
<td>2.00%</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.356</td>
<td>1.75%</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.340</td>
<td>1.50%</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.340</td>
<td>1.50%</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.330</td>
<td>1.45%</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.251</td>
<td>1.25%</td>
<td></td>
</tr>
</tbody>
</table>

因予測出法: 主因子法
w= VER+b

10) 数学的な意味もあるが，分析を行う段階では，名前とその解釈の仕方が分かれればよい。詳細は 6.2.1 参照のこと。
Table 5 SPSS 出力：スクリーブロット

![スクリーブロット](image)

因子のスクリーブロット

因子の番号

- 固有値の比をとる この基準は、固有値を用いているという点では、スクリーブロットと同じですが、より客観的(?)な基準です。したがって、次のような基準が用いられることがあります。

固有値を順に、λ₁, λ₂ として、その比をとります。この方法は、1 因子性を確認するのに良く使われます。複数因子の場合にはたいてい、順に大きくピークを迎えて落ち始めます。この方法では、例えば λ₂/λ₃ が大きければ 2 因子、λ₃/λ₄ が大きければ 3 因子と解釈することができます。

Table 6 SPSS 出力：固有値の比

<table>
<thead>
<tr>
<th>固有値</th>
<th>比</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ₁</td>
<td>4.605</td>
</tr>
<tr>
<td>λ₂</td>
<td>3.347</td>
</tr>
<tr>
<td>λ₃</td>
<td>2.007</td>
</tr>
<tr>
<td>λ₄</td>
<td>1.221</td>
</tr>
<tr>
<td>λ₅</td>
<td>0.987</td>
</tr>
</tbody>
</table>

この例では、1.38, 2.19, 1.80, 1.24 となります。これを見ると、ピークを迎えるのが λ₂/λ₃ で 2.19, そして次が λ₃/λ₄ で 1.80 となっています。もし λ₃/λ₄ がより小さい値であったならば、2 因子という解釈をして良いでしょう。しかし、この例では λ₃/λ₄ も 1.80 とある程度大きい値を示しており、λ₂/λ₃ と λ₃/λ₄ の差は小さいため 3 因子をとる

11) 同じ固有値を用いているので、スクリーブロットと結果が大きく変わることはありません。しかし、スクリーブロットによる判断は、落ち込みが微妙な場合など、人によって判断が分かれることが多くあります。
という解釈も成り立つと考えられます。
ただしこの方法は、先に述べたように、一因性の確認に有効なので、複数の因子をとる場合にはそれほど有効ではないかも知れません。この方法もあるだろうというぐらいに考えておいてください。

・ 固有値 1 以上という基準 固有値 1 以上をもって因子数としているものもあります。SPSS のデフォルト（因子数を指定しない）では、勝手に固有値 1 以上の因子数を採用します。
この基準は、因子数を多く取りすぎる傾向があります。当然、因子数が増えると説明率も上がりますし、因子の解釈も容易になるかもしれません。しかし、多数のものをできるだけ少ない因子で解釈をすることに因子分析の意義（おもしろさ？）があるのではないでしょうか。

注意：因子数を固有値から判断すると述べているのですが、絶対的な基準として、固有値が 1.00 以下となった場合は、それらの因子として採用することができません。したがって、この例では、もっと多くの因子を採用したとしても、4 つまでになります 12)

・ 分散説明率を見る たまに論文で見かける基準です。以下のように表記されていることがありります。

・・・説明率が 50％を超えることから、3 因子とした。・・・

はっきりいって、別に 50％でなければならない理由はありません。60％でも 25％でも、研究者の判断によって自由に決められるのです。研究者が「これくらいの説明率はほしい」と考える線が基準となっていますので、根拠には乏しいものです。皆さんにはおすすめしない判断基準です。

12) この資料では「固有値 1.00 以下の因子をとってはいけない」という書き方をしています。しかし、絶対にダメか？と思うとそうでもないようにです。このあたりは専門家の間でも意見が分かれるようす。個人的には、固有値 1.00 以上という基準は用いるべきではない（因子数を多く取りすぎる）と考えています。したがって、固有値 1.00 以下の因子をとることは避けた方がいいと考えています。ただし、内容的に妥当な解釈が可能であるならば許容されるのかもしれません。
6.2.1 SPSS 出力の「説明された分散の合計」の見方（固有値が示すもの）・・・advance
ちょっとここで発展の内容です。一度最後まで目を通してから、ここに戻ってくることをお勧めします。

脚注 9（19 ページ）では、固有値に関しては名前と使い方が分かればいいといいましたが、どんな数値なのかどうしても気持ちが悪いという人のために・・・（絶対にいますよね？）。

ここでは数学的な固有値の意味ではなく、因子分析の文脈における固有値が示すもののを説明しようと思います。まず、固有値はどこから出てくるのかというと、相関行列から計算されます。

因子分析の文脈では、固有値 = 因子寄与13）となります（主因子法の時のみ。付け加えば初期解の時のみ。）。SPSS の出力結果（後に示した Figure 5）を見ると, 1.「共通性」, 2.「説明された分散の合計」, 3.「因子行列」, 4.「回転後の因子行列」という結果があります。さらに 2.「説明された分散の合計」には早期の固有値の抽出後の負荷量平方和, 早期回転後の負荷量平方和があります14）。因子数の決定の際には、早期の固有値の合計の箇所を参照します。

ここで、「説明された分散の合計」に示されている 3 つの関係に触れておきます。この部分の出力結果をまとめた Figure 5 をじっくり眺めてみてください。なお、Figure5 の下の 2 つの表に関してですが、因子寄与、寄与率、共通性は SPSS が計算してくれていないので、自分で計算することになります。

まず、「説明された分散の合計」の合計の箇所は早期の固有値の抽出後の負荷量平方和、早期回転後の負荷量平方和で変化しています。これは当然のことで、回転することによって各因子の負荷量が変化するためです（固有値 = 因子寄与でしたね）。すると、各因子の分散の % も変化するのですが、面白い？ののは最終的な累積 % は変わらないという点です。

印刷すると分かりにくいので、同じ色付けをしたところには、同じ数字をつけました。よく見比べてみてください。2）を見てみましょう。「因子行列（回転前）」の因子負荷量を縦に自乗和した因子寄与と、「説明された・・・」の抽出後の・・・の合計とが

13）因子寄与とは因子負荷量を縦に自乗和したもの。つまり、因子負荷量の平方和。
14）以降、これらを「・・・」や「・・・」という表記をします。
表の出力結果の関係

図 5

表の出力結果の関係
6.3 因子分析の第2ステップ：因子の抽出方法

SPSS では因子抽出方法（初期解の求め方）として、主成分分析、主因子法、最尤法などが選択できるようになっています。そして（理由は分かりませんが）デフォルトは主成分分析になっています。つまり SPSS に何も指示を与えずに分析すると、主成分分析になってしまいわけです15)。

どの抽出法がよいのかという議論は難しくて、いまもって結論はでていません。抽出方法の違いによる結果の差違も、用いるデータによって変わってきます。あるデータでは、どの抽出法をもちいても結果に大差はないこともあるでしょうし、また別のデータではかなり異なった結果となることもあります。最終的には、結果の綺麗さ（解釈のしやすさ）で判断することでよいでしょう。したがって、いろいろやってみて判断するのが一番です。

SPSS には、デフォルトの主成分分析はもちろん、7つの計算方法があります。デフォルトになっている主成分分析では多少共通性が大きく推定されます。因子分析を目的とするのであれば、避けたほうが無難でしょう。その他については基本的にどれを用いても、結果に大差はないと考えられます。因子構造が変わるほどのドラマチックな変化はなく、微妙に因子負荷量が異なるくらいです。とりあえずは主因子法を中心に、一般化最小2乗法や最尤法などの結果も見ておくというのが無難かもしれません。

15) 誤解があるとまずいのですが、因子抽出法として主成分分析を使うという意味です。因子分析と主成分分析は非常に似ていて、お互いに密接な関係があるのですが、別物なので注意して下さい。
6.4 因子分析の第 3 ステップ：因子分析における回転

因子分析では回転方法の選択が大きな問題となっています。論文等で、バリマックス回転、プロマックス回転、プロクラスタス回転などを利用することがあると思います。ここでは、回転は何かを具体的に図を用いて説明します。

因子分析を実行すると、まず初期解が得られます (Table 7) 16。2 因子なので、それぞれの項目は 2 つのグループに分けることができるのですが、この表からどの項目とどの項目がまとまっているかわかりますか？

これではとてもわかりにくいと思います。そこで、第 1 因子を X 軸、第 2 因子を Y 軸として、これらの負荷量をプロットすると、Figure 6 のようになります。Figure 6 をみると、各点が左上と右上の 2 つにまとまっているのが確認できます。確かに 2 つのまとまりが見えてきます。

Table 7 SPSS 出力：因子負荷行列 (回転前)

<table>
<thead>
<tr>
<th>回転前</th>
<th>因子</th>
<th>回転後</th>
<th>因子</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>-0.30</td>
<td>2.30</td>
<td>-0.30</td>
</tr>
</tbody>
</table>

Figure 6 因子負荷プロット (回転前)

次に因子の解釈を行います。それらの項目のまとまりにどのような共通性があるのかを推測し、まとまりに名前を付けていく作業です。そのと、ここでまた問題にぶつかると思います。先ほど述べたように、点のまとまりは Figure 6 から見てとることができます。

16) この因子分析は、主因子法・バリマックス回転、2 因子指定で行いました。2 因子なので平面で書けます。3 因子になれば 3 次元上で書くことができます。4 因子になると？？？これはもうお手上げですね。
しかしこれらはある程度ばらつきがありますから、どの項目がその因子を特徴的に示しているものなのか、逆にどの項目が特徴的とはいえないのか、などといったことを判断しにくいのです。判断の基準がとりにくいと言ってもよいでしょう。

もう少し因子分析の用語を使って考えてみましょう。因子負荷量は各項目の因子に与える影響（重み）と解釈することができます。17）もう一度 Table 7 と Figure 6 を見てください。ここでは、因子が軸で表されています。しかし、ほとんどの項目が両方の軸に負荷を持っているため、その因子（つまり X 軸と Y 軸の）の特徴を明確にすることは困難です（軸に意味づけをすることが困難です）18）。

そこで、登場するのが回転です。軸を回転させることによって、それぞれの軸の持っている意味を明確にできるようにすることが目的です。回転後の負荷量を Table 8 に、図示したものを Figure 7 に示します。Figure 7 を見れば明らかのように、軸が 2 つの項目の集まりを貫くような位置になっています。そうなると、軸にぴったりと沿った位置にある項目は、その因子（軸）の特徴を持ち、他方の因子（軸）の特徴をほとんど持っていないということになります。さらにそのような項目の中でも、原点から遠くに位置するものほど、その因子（軸）の特性を強く表現している項目と考えられます。つまりは、このような項目を中心に解釈を行うことで、因子の特徴を特定しやすくなるのです。

17）発展：直交解の場合の、因子負荷量は因子とその項目との相関係数に一致します。なお、斜交解の場合の因子負荷行列にあたる因子パタン行列の値と、因子と項目の相関係数は一致しません。斜交解の場合は、因子構造行列がこの値に一致します。

18）例えば、A7N は第 1 因子に 0.559、第 2 因子に 0.372 となっています。確かに第 1 因子に対して大きな負荷を示していますが、第 2 因子にも無視できない負荷を示しています。Table 7 ではほとんどの項目がこのような状態になっています。

26
Table 8 SPSS 出力：因子負荷行列（回転後）

<table>
<thead>
<tr>
<th>因子1</th>
<th>因子2</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACT1</td>
<td>0.880</td>
</tr>
<tr>
<td>FACT2</td>
<td>0.671</td>
</tr>
<tr>
<td>FACT3</td>
<td>0.369</td>
</tr>
<tr>
<td>FACT4</td>
<td>0.565</td>
</tr>
<tr>
<td>FACT5</td>
<td>0.583</td>
</tr>
<tr>
<td>FACT6</td>
<td>0.557</td>
</tr>
<tr>
<td>FACT7</td>
<td>0.493</td>
</tr>
<tr>
<td>FACT8</td>
<td>0.479</td>
</tr>
<tr>
<td>FACT9</td>
<td>0.458</td>
</tr>
<tr>
<td>FACT10</td>
<td>-0.403</td>
</tr>
<tr>
<td>FACT11</td>
<td>-0.382</td>
</tr>
<tr>
<td>FACT12</td>
<td>0.226</td>
</tr>
<tr>
<td>FACT13</td>
<td>0.114</td>
</tr>
<tr>
<td>FACT14</td>
<td>0.146</td>
</tr>
<tr>
<td>FACT15</td>
<td>-0.271</td>
</tr>
<tr>
<td>FACT16</td>
<td>-0.226</td>
</tr>
<tr>
<td>FACT17</td>
<td>-0.103</td>
</tr>
<tr>
<td>FACT18</td>
<td>0.219</td>
</tr>
<tr>
<td>FACT19</td>
<td>-0.361</td>
</tr>
</tbody>
</table>

Figure 7 因子負荷プロット（回転後）

Figure 8 回転のイメージ

Figure 6 と Figure 7 を同時に図示すると、Figure 8 のようになります。つまり、回転とは、項目どうしの関係は維持したまま、解釈がしやすい位置に軸を再配置するということになります。

続いて、一般的な回転方法の特徴に触れております。
バリマックス回転 バリマックス回転は、最もポピュラーな回転方法で、直交回転に分類されます。なお、ここでの直交とは、軸が直交している（90°の角度で交わっている）という意味です。直交の意味について少し説明しておきましょう。軸が直交しているということは、各軸（つまり各次元）が、相互を持たず、独立しているということを示しています

すると、ここでひとつの疑問が出てきます。それは、直交した軸を保っている限りは、どの位置に軸を持ってきてもいいのではないかということです（因子の不確定性）。それはその通りで、極端に言えば、初期解の位置でも問題はありません。軸の位置だけが変わって、項目の集合状況自体は変わらないのですから。

しかし、先述したように、解釈を容易にするためには何らかの基準になるものがあるほうがよいのです。実際の計算は複雑ですが、全ての項目がいずれかの軸に対して負荷量が高くなり、同時に他の軸に対して負荷量が低くなるように軸を回転させるというイメージです。

バリマックス回転 バリマックス回転もよく用いられる回転方法で、斜交回転に分類されます。先ほどの直交回転との違いは、その名の通り軸が直交せず、斜めに交わる点です。では、斜めに交わるということはどのような意味を持つのでしょうか。これは、先ほど少し触れたように、各軸（各次元）の間に相関があることを認めるということに相当します。

先ほどのデータを用いて、主因子法・バリマックス回転をした出力結果を見ておきま す。初期解に関してはバリマックス回転の場合と同様の結果となります（Table 7）。SPSS でバリマックス回転を行うと、因子行列21)，パタン行列（SPSS の出力表のタイトルでは「パタン」となっていますが、通常では「パタン」と表記する方が多いようです。ここでもこれ以後は「パタン」と書きます）、構造行列、因子相関行列が出力されます。これで重要なのが、パタン行列と因子相関行列です。Table 9，Table 10 に結果を示します。

パタン行列は、バリマックス回転の際の回転後の負荷量に相当するものですので、論文等ではこの数値が記述されます。もう 1 つの因子相関行列は、各因子の相関係数が示されていま

19) 軸の交なる角度を とすると，が相関係数になります。
20) Table 7 のように、初期解では 2 つの因子に同程度の負荷がかかるている項目がほとんどです。回転後の Table 8 では、どちらか一方の因子に対する負荷が高くなっていることが分かります。
21) バリマックス回転のときと同様、初期解にあたる。
Table 9 因子パターン行列

<table>
<thead>
<tr>
<th>因子</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A10Y</td>
<td>.687</td>
<td>.186</td>
</tr>
<tr>
<td>A7Y</td>
<td>.674</td>
<td></td>
</tr>
<tr>
<td>A13Y</td>
<td>.642</td>
<td></td>
</tr>
<tr>
<td>A5Y</td>
<td>.565</td>
<td></td>
</tr>
<tr>
<td>A4Y</td>
<td>.563</td>
<td>-.113</td>
</tr>
<tr>
<td>A19Y</td>
<td>.559</td>
<td></td>
</tr>
<tr>
<td>A16Y</td>
<td>.501</td>
<td>.218</td>
</tr>
<tr>
<td>A11Y</td>
<td>.476</td>
<td>-.145</td>
</tr>
<tr>
<td>A14Y</td>
<td>.457</td>
<td></td>
</tr>
<tr>
<td>A12X</td>
<td>-.419</td>
<td>.196</td>
</tr>
<tr>
<td>A3X</td>
<td>-.378</td>
<td>.153</td>
</tr>
<tr>
<td>A20X</td>
<td></td>
<td>.631</td>
</tr>
<tr>
<td>A17X</td>
<td></td>
<td>.775</td>
</tr>
<tr>
<td>A15X</td>
<td>.136</td>
<td>.725</td>
</tr>
<tr>
<td>A9X</td>
<td>.165</td>
<td>.609</td>
</tr>
<tr>
<td>A18X</td>
<td>-.255</td>
<td>.521</td>
</tr>
<tr>
<td>A6X</td>
<td>-.216</td>
<td>.414</td>
</tr>
<tr>
<td>A1X</td>
<td>-.112</td>
<td>.363</td>
</tr>
<tr>
<td>A8Y</td>
<td>.209</td>
<td>-.349</td>
</tr>
<tr>
<td>A2X</td>
<td>-.253</td>
<td>.275</td>
</tr>
</tbody>
</table>

因子抽出法: 主因子法
因子回転法: Kaiser の正規化を伴うプロマックス法

Table 10 因子間相関行列

<table>
<thead>
<tr>
<th>因子</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000</td>
<td>-.102</td>
</tr>
<tr>
<td>2</td>
<td>-.102</td>
<td>1.000</td>
</tr>
</tbody>
</table>

因子抽出法: 主因子法
因子回転法: Kaiser の正規化を伴うプロマックス法

s. この相関係数が，軸の傾き加減を表しているので，斜交回転を行った際には必ず言及する必要があります。この例では，因子間相関が -.102 （角度に直せばおおよそ 96ø ：

\[\cos \theta = -.10 \] となる \(\theta \) を求めるとき約 96ø になります）だったので，直交解（90ø ）との違いが分かりづらいと思います。そこでここでは，シミュレーションデータを用いて説明したいと思います22)．

SPSS による出力結果を Figure 9 に示します。

注意：回転後にパターン行列と構造行列が出てきますが，バリマックス回転の際の回転

22) シミュレーションデータは，RESGEN4(Muraki,2001) を用いて生成。データは 1000 名分，下位尺度
1 10 項目・下位尺度 2 10 項目（計 20 項目）。因子間相関は .60 を仮定。
後因子負荷量にあたるもののがバラン行列です。また、出力結果の中にもあるように、プロマックス回転の場合（因子が相関する場合）は、因子負荷量平方和をしても意味がないことに注意して下さい。

パリマックス回転の時と同様に、初期解をプロットし（Figure 10）、それをプロマックス回転したものがFigure 11となります。因子相関が .588 であるため、軸どうしの角度が約 54°となります。（シミュレーションデータのためきれない出すぎています。実際にこれほどきれないに見えても分かることほどほとんどありません・・・）

6.4.1 補足: 直交解と斜交解はどっちが良いか？

ここまで説明すると 1 つの疑問が出てくるでしょう。それは、直交解と斜交解ではどちらが良いのか？ということです。この点に関してはどちらが良いというものではないのですが、卒論等では大いに迷うところでしょう。当然どちらにしろ、メリット、デメリットが
あります。

バリマックス回転のメリットは、なんといっても解釈が容易な点です。23)

デメリットは（デメリットというほどでもありませんが）、因子間の相関を0であると仮定している点でしょう。心理学で扱う潜在変数どうしの無相関であるという点は多いです。また、ある構成概念を測定しようと警戒するとき、それを因子分析にかけるとき、一つの構成概念を構成する因子の間に相関は無く考えることも無理がある心がかりです。

これに対応して、プロマックス回転は因子間に相関があることを仮定できるため心理学では妥当な手法と考えることもできます。これは斜行回転のメリットと言えるでしょう。しかし斜行回転のデメリットには、解釈が難しいということがあります24）。

せっかくですので、先ほどのデータを主因子法・バリマックス回転で分析してみると、回転後の負荷量が Figre 12 のようになります。見覚えですか、これを先ほどの図と重ねると Figure 13 のようになります。

負荷量からも分かるように、一つの軸に対する負荷量が 0 に近いもの（つまりはどちらかの軸にぴったりと寄り添っている位置にある項目）がほとんどなくなっています。

やはり、この程度 (因子間関係が .60 程度) の場合には、プロマックス回転を使用した

23) 直交解の場合は、因子負荷量が因子と当該項目との相関に相当するため、斜交解の因子負荷の場合は相関とは一致しない。

24) バリマックス回転の時のように、簡単に回転した軸を描くことができません。
回転後の因子行列

<table>
<thead>
<tr>
<th>因子</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR0001</td>
<td>0.176</td>
<td>0.530</td>
</tr>
<tr>
<td>VAR0002</td>
<td>0.193</td>
<td>0.595</td>
</tr>
<tr>
<td>VAR0003</td>
<td>0.200</td>
<td>0.586</td>
</tr>
<tr>
<td>VAR0004</td>
<td>0.169</td>
<td>0.605</td>
</tr>
<tr>
<td>VAR0005</td>
<td>0.211</td>
<td>0.588</td>
</tr>
<tr>
<td>VAR0006</td>
<td>0.228</td>
<td>0.627</td>
</tr>
<tr>
<td>VAR0007</td>
<td>0.172</td>
<td>0.675</td>
</tr>
<tr>
<td>VAR0008</td>
<td>0.223</td>
<td>0.602</td>
</tr>
<tr>
<td>VAR0009</td>
<td>0.236</td>
<td>0.609</td>
</tr>
<tr>
<td>VAR0010</td>
<td>0.217</td>
<td>0.556</td>
</tr>
<tr>
<td>VAR0011</td>
<td>0.735</td>
<td>0.236</td>
</tr>
<tr>
<td>VAR0012</td>
<td>0.770</td>
<td>0.278</td>
</tr>
<tr>
<td>VAR0013</td>
<td>0.785</td>
<td>0.265</td>
</tr>
<tr>
<td>VAR0014</td>
<td>0.780</td>
<td>0.269</td>
</tr>
<tr>
<td>VAR0015</td>
<td>0.727</td>
<td>0.269</td>
</tr>
<tr>
<td>VAR0016</td>
<td>0.694</td>
<td>0.231</td>
</tr>
<tr>
<td>VAR0017</td>
<td>0.793</td>
<td>0.264</td>
</tr>
<tr>
<td>VAR0018</td>
<td>0.798</td>
<td>0.252</td>
</tr>
<tr>
<td>VAR0019</td>
<td>0.812</td>
<td>0.229</td>
</tr>
<tr>
<td>VAR0020</td>
<td>0.784</td>
<td>0.277</td>
</tr>
</tbody>
</table>

Figure 12 因子負荷行列 (パリマックス回転後)

Figure 13 因子パタン行列プロット (パリマックス回転後)

Figure 12 因子負荷行列 (パリマックス回転後)

ほうが適切かもしれません。実際に、因子間相関が .60 になることは少ないので 25)，基本的にパリマックス回転で行い、どうしてもという時にはプロマックス回転を用いるというスタンスで良いのではないでしょうか。

ということで、どちらの方法にも一長一短があります。しかし、下位尺度を構成する項目の観点からすれば、この両者で劇的に因子分析結果が異なることは実際のデータではほとんど見たことがありません・・・。回転も因子の抽出方法と同じで、いろいろと試してみて、最も解釈のしやすいものを選択するというスタンスがよいでしょう。

25) 論文などではありえると思いますが、ここまで因子相関が高いのであれば、よりよい理由（根拠）がない限りは因子数を減らして（相関が高い因子どうしをまとめて）考えていく必要があると思います。
6.4.2 因子分析の流れ-尺度構成の点から-

尺度作成における因子分析は、そこであるだろう因子の数を推定し、それぞれの因子を
測定しうる項目に目星をつけさせるために行われます。そのため尺度構成のために因子分析を
用いる際は、何度も何度も分析を繰り返して、最も良い結果・解釈しやすい結果を探す必
要があります。

因子分析は指定する因子数（当然ですが・・・・）や、投入する項目を変えるだけでも結
果が変わってきます。つまり、どの項目を含めるか、削除するかが大変重要です。

3 因子を指定 □ 項目 13 をはずす □ 項目 5 をはずす □ 項目 13 を戻す・・・。じゃ
あ、2 因子では・・・

という具合に、明確な正解が存在しないため、延々と続くことになります。とはいえ
ても、まったく基準がないわけではないかもしれません。このあたりは、いろいろな考え方があるの
で、ここで示す基準に従う必要もありますし、流れに従わなければならない必要もあります。1 つ
の例として考えてください。流れを Figure 14 に示してみました。
全項目で，因子分析を実行する。
(初期解の抽出法は主因子法がよい。
因子数はデフォルトでもよい。
回転は特に必要なし)

処有値（スクリーブロット）を見て，
因子数を決定する。

決定した因子数を指定して，再度因子分析を行う。
（初期解の抽出法，回転の方法も指定する。）

説明率&回転後の因子負荷量（因子パターン）などの結果，項目
分析の結果など総合的にみて，削除の候補となる項目がないかを検討する。
削除対象項目は？

ない！

削除する項目・その
順番を変えてもみる

ある

再度，3. と同様の条件で因子分析を実行する。

因子のまとまりのよさ，因子の解釈のしやすさ，
納得できる説明率が得られた？

OK

??

下位尺度を構成する

信頼性係数αを
算出する

Figure 14 探索的因子分析から下位尺度構成までの流れ
因子分析結果を確定するため（「これでよし！」と納得するため）の基準としては、以下のものが考えられます。

1. 因子の解釈しやすさ（命名のしやすさ）・抽出された因子が、それぞれに納得できる意味的まとまりを示しているかどうか
2. 解説率・全体の分散のうち、どの程度を説明できるものにしたいのか（ADVANCEを参照のこと）
3. 下位尺度ごとの信頼性（α係数）・抽出された因子を測定する項目群（下位尺度）の信頼性が高いかどうか（次章7で扱います）
4. 因子構造の美しさ・それぞれの項目が、ひとつの因子にのみ高い負荷量を示し、その他の因子には0に近い負荷量を示すような結果（単純構造とも言います）になっているか

これらのそれぞれが基準になるでしょう。最終的には、数値的なものを重視するか（上記2から4を中心に）、内容を重視するか（上記1を中心に）の選択を迫られます。どちらを優先させるかは研究者自身の判断によります。

では、Figure 14での削除対象となる項目とはどんな項目でしょうか。例えば、

1. 複数の因子に同程度の負荷量を持つ項目
2. いずれの因子にも因子負荷量が低い項目
3. 下位尺度を構成した場合に信頼性を著しく下げる項目
4. 同一因子内の他の項目と内容的に整合しない項目

などが挙げられます。もちろん、項目レベルで平均値、標準偏差、分布を確認した際に必要なマークをつけられた項目にも留意しておく必要があります。
7 下位尺度の構成

因子分析を行い，負荷量行列の表（いわゆる因子分析の結果として論文に記載されているような表）が完成し，因子に対する命名ができたら次の段階に進みます。（第1部の「3．因子分析結果を基に尺度を構成する」も併せて確認しておいてください。）

ここまでで，自分が測定したかった構成概念をいくつかの因子から構成されているものととらえるのが妥当なのか，そしてその因子を特徴づける項目はどれなのか，ということがわかっていると思います。これを使って尺度を構成していくのです。なお，複数因子の存在を仮定する場合には，これまでの構成概念を測定するという目標が若干変わってきますので注意しておいてください。複数因子が存在することがわかったのですから，測定する対象は，構成概念そのものから，その構成概念を構成している因子へとシフトします。なお，言葉としては，構成概念を測定するもの = 尺度，構成概念を構成している因子を測定するもの = 下位尺度，と対応させることが多いです。

まずは，項目の選出から始めます。それぞれの因子を代表する項目を選出するということです。ここでは，すべての項目について，（絶対値において）一番高い負荷量を示した因子に割り当てるということはしない方がいいです。例えば，ある項目が各因子に示した負荷量は一番高いものでも.34であったとしましょう。このような時，無条件に.34を示した因子を構成する項目として組み入れることは考えものであるということです。多くの論文で，「負荷量の絶対値が.5以上のものを採用した」などと記載されているように，自分で基準を決めて，それ以上の負荷量がある場合のみ採用するというやり方がよいでしょう。また，場合によっては，ある因子に.45，別の因子に.40 というように，ある程度の負荷量が複数の因子に認められることがあります。因子分析の過程で，このような項目を削除した場合は問題になりませんが，最終的な結果に含まれている場合には，どちらの因子に割り当てるかが問題となります。そのような時には，「ひとつの因子に.40以上の負荷量を示し，他の因子への負荷量が.30以下の項目を選出した」というような基準を設けることもできます。もしこのような基準を使ったとすれば，先のような項目はいずれの因子にも含まれないこととなります。

このような選出の過程を経て，やっと「ものさし」の原形ができあがります。あとは，これらの下位尺度の信頼性などを検討して，それが使い物になるかどうかを判断します（もちろん，ここで「使い物にならない」ということが判明することもあります）。
使い物になるかどうかの判断は、主に以下の分析（検討）が行われます。以下では、簡単にそれらについて解説します。

1. 項目尺度得点相関
2. 信頼性係数
3. 妥当性の検討

7.1 項目尺度得点相関 (I-T 相関)

ここでは、作成した尺度がどの程度信頼できるものか（一貫したものか）という点を検討します。次に扱う信頼性係数とも密接にかかわります。13，14 ページあたりの議論を思い出してください。あるひとつの構成概念を測定する項目群は、それぞれの項目間にある程度の相関があると考えられます。それぞれの項目が、ある程度の独自性を持ちながらも、ひとつの内容を測定しているかどうかを確認するのです。

項目尺度得点相関とは、文字通り、項目（得点）と尺度得点との相関です。

例えば、X 尺度が、項目 1，項目 2，・・・，項目 10 の 10 項目で構成されているとします。そして、これらの項目の合計点を尺度得点 Y とします。

この相関をみるとためには、あらかじめ尺度得点 Y（尺度に含まれる項目の項目得点の和）を算出しておく必要があります。そして、1 項目ずつ項目得点と尺度得点 Y との相関を求めていきます。

ただし項目数が少ない場合は、例えば、「項目 1」と「項目 1 を除いて構成した尺度得点」、「項目 6」と「項目 6 を除いて構成した尺度得点」というように、当該項目を除いた尺度得点との相関を求めめた方がよいとされます。項目数が一桁の場合などは、こちらの方法がよいでしょう。SPSS が簡単に計算してくれます。

既に因子分析を行って尺度として構成しているので、極端に低い相関が出ることはないと思いますが、.20 を切るようであれば、その項目をはずした方がいいでしょう。この項目尺度得点相関は、因子負荷量とほぼ対応しているので、因子分析の時点で極端に低い因子負荷量を持つ項目ははずす理由にもなっていることです。
7.2 信頼性係数

有名な（？）信頼性係数ηです。

第1部で扱ったように，信頼性係数であるη係数は内的一貫性や内的一貫性を示すとされます。当然高い値の方がいい尺度であるとされます。信頼性係数は，折半法を全通りに関して行いその平均をとったものなので，各項目間の相関が高ければ高いほどこの値も高くなります。

しかし，η係数の特徴をおぼえていると思いますが，項目数が多ければ係数は高くなり，逆に少なければ係数も下がる傾向があります。そのため，項目数が3とか4の場合には，それなりの相互関係をもつ項目群であっても非常に低い値しか得られないことがあります。このような時にはη係数は意味をもたないですから，先の項目尺度得点相関や項目間の相関係数を使って内的一貫性や内的一貫性を確認しなければなりません。

さて，では基準は？となるのでしょうか，ここにも絶対的な基準はありません。本によっては，.70と.80を越えることが望ましいという記述もありますが，先にも記したように項目数によってη係数は影響を受けるので，項目数を踏まえた検討が必要になります。でも，やはり「8項目の時はη=0.75以上」なんて基準はないのです。η係数が上昇するように項目の整理を行うこと。項目数が少なければ，η係数は参考程度にとどめること。などと，絶対的な指標とするよりは信頼性を検討する際の参考指標として利用するのがよいでしょう。

η補足（すこしだけADVANCE）：η係数について

η係数は，かなり項目数に依存します。項目数が少なければ，たとえ因子負荷量が大きい項目のみを集めてきてもそれほど高いη係数は得られません。

例えば，4項目くらいの場合.70まで高ければ御の字でしょう。逆に，20項目あっても.70程度のη係数しか得られていなければさらに尺度を洗練させることができると思います。

ところで，η係数は何を求めるのですでしょうか。なぜ，信頼性係数といわれるのですでしょうか？このあたりを突き詰めると，それなりに難しいのですが簡単に触れておきます。詳細はテスト理論の本を見てください。

真の信頼性係数というものは一般にはρで示されます。しかし，真の状態は分からないので，これを示すことはできません。そこで，何らかの方法を用いて，真の信頼性係数の
推定値 $\hat{\rho}$ を求める必要があります。何らかの方法をいたしましたが、再検査法、平行検査法、折半法などがあります。詳細は自分で勉強してください。

さて、まだ α 係数の話です。ここで、α 係数と $\hat{\rho}$ の関係を見ると $\alpha \cdot \hat{\rho}$ という関係が証明されます。

つまり、α 係数は真の信頼性係数の下限値を与えるということになります。それが、α 係数が信頼性係数といわれる所以です。

では、α 係数とはどのように計算されるのでしょうか。これは、概念的には折半法と関係があります\(^{26}\)。折半法の場合、どのように折半するかによってその相関が異なります。そこで、全通りの折半方法での相関を求めて、その平均値をとったものが α 係数と考えていいでしょう。

したがって、A, B, C, D の 4 項目の場合、折半の方法は Table に示した 3 通りあり、A と B の合計得点と C と D の合計得点との相関、A と C の合計得点と B と D の合計得点との相関、A と D の合計得点と B と C の合計得点との相関という 3 つの相関係数が得られます。そして、これらの相関係数の平均が α 係数となります。

<table>
<thead>
<tr>
<th>尺度 1</th>
<th>尺度 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+B</td>
<td>C+D</td>
</tr>
<tr>
<td>A+C</td>
<td>B+D</td>
</tr>
<tr>
<td>A+D</td>
<td>B+C</td>
</tr>
</tbody>
</table>

とすれば、2 項目の場合は項目 A と項目 B の相関をとる以外にないので、その項目間相関がそのまま α 係数となるはず・・・・なぜですね。項目数が少ない場合 (4 項目や 5 項目) はこの考え方で求めた数値と必ずしも一致しません\(^{27}\)。このことからも、項目数が少ない場合に信頼性係数についての議論（検討）をするのは難しいのかかもしれない。

\(^{26}\) 折半法は信頼性的推定方法のひとつです。これについても、テスト理論の本を見てください。

\(^{27}\) ここでは 4 項目や 5 項目としましたが、諸説あるようです。
7.3 妥当性

尺度の信頼性と妥当性というように、信頼性と同列で扱われる妥当性ですが、その確認は信頼性よりも非常に難しいものです。一言で、妥当性といってもさまざまな妥当性があります。

内容的な妥当性や、別の尺度との関係（基準連関妥当性）などなど。詳細は教育心理学ハンドブック（2003）などに詳しく書かれています。

7.3.1 内容的妥当性

個人的な意見としては、どんな数値よりもこれが一番大切だと思います。いくらの等係数が高くとも、他の研究者が見てどうかとなるような（思うような）尺度はよくありません。

この内容的妥当性は、明確な数値としては表されません。次の例を考えてみてください。

例えば、日本史のテストで日本史の能力を測定するのに、その問題に戦国時代しか出題されていなかったらどうでしょうか。それは、戦国時代に関する測定をしているだけで、日本史の能力を測定しているとはとても言えません。日本史の能力を測定するのであれば、古代史から現代史まで幅広く出題されていなければなりません。

このようにパックを書いて「おかしい（何か変だ）」わかるものであればよいのですが、心理測定における項目レベルでは、かなり難しい判断となります。もちろん項目の作成段階で、測定したいものと項目の対応には注意がされていると思いますので、まずはこの段階で内容的妥当性はチェックされていると思います。この段階では、落としていない部分が無いかどうかという観点からの内容的妥当性のチェックという意味合いが強いのです。

第2段階は、因子分析後の項目群について判断する時でしょう。負荷量などに細心の注意を払いながら因子分析をした。その後、項目尺度得点相関や等係数などの信頼性の数値にも気をつけました。でも、どこか異質な項目が下位尺度の中にまじっているということはよくあります。統計量だけに目をやっていると、このような項目を排除することはできません。また、統計的に問題がないからといって、このような項目を残しておいてよいということにもなりません。そこでもう一度出てくるのが妥当性という基準なのです。この段階では、異質なものが含まれていないかどうかという観点からのチェックになると考

28) 妥当性係数という言葉もありますが、これに関しては自分で勉強してみてください。
えてください。
既存の尺度を使用する場合も含めて、信頼性係数だけでなく、尺度の内容をよく検討することが必要です。妥当性の観点から尺度を確定する場合は、他の人にも見てもらって、意見を取り入れていくことが必要だと思います。

7.3.2 基準連関妥当性
基準連関妥当性には収束的妥当性と弁別的妥当性があります。どちらも、尺度作成をする際には非常に重要です。ただし、別の基準を測定していなければ検討できないものなので、今更言っても手遅れかもしれません。本気で尺度を作成するときのために覚えておいてください。

収束的妥当性は収束的・・・というと言葉が難しいかもしれません。これは測定しようとしている概念と関連が深いと考えられる別の基準と高い相関が得られているかを示すものです。
収束的妥当性に含まれるものとして、併存的妥当性という言葉を見ることがあると思思います。
併存的妥当性とは、検討する尺度とその妥当性を確認するための尺度が同時測定されている場合の収束的妥当性のことを指します。

弁別的妥当性は、収束的妥当性とは逆に低い相関をもって妥当性を示そうとするものです。
例えば、社会的望ましさに関係しそうなものを測定する尺度を構成しようとする場合などが考えられます。そこで愛他性を測定する尺度について考えてみましょう。社会的な望ましさに敏感な人がいたとしたら、もしかすると愛他性尺度に回答する際に、その人自身の愛他性よりも、「こう答えておくほうが社会的に望ましいだろうな」という社会的望ましさの意識が強く影響するかもしれません。しかし、測定の目的は愛他性であって、その回答者が持っている社会的望ましさに対する傾向ではありません。こんなときに弁別的妥当性が必要とされるのです。新たに作成した尺度と同時に社会的望ましさについての尺度を実施し、社会的望ましさ得点の相関が低いことをもって、その尺度が社会的望ましさの影響をそれほど受けていない（異ったものを測定している）ということを示すのです。

使える尺度を作成する際には、最低限１つずつは見ておく必要があると思います。
出典はちゃんと覚えていないのですが、アメリカでは収束的妥当性に関して少なくとも
5つ以上確認していないとダメという話を聞いたこともあります。

7.4 因子間の相関

下位尺度の構成は少しずれるのですが、補足として因子間の相関について触れておくと思います。

因子間の相関とすると、少し固いかもしれないので下位尺度間の相関と言いかえましょう。通常、下位尺度間の相関を求める際には、下位尺度ごとの尺度得点（合計点）を用いることが多いと思います。

相関といわれると、斜交解をイメージすると思いますが、直交解の場合でも、下位尺度間の相関は出てきます。

？？？と思った人はよく理解できている人ですね。

たしかに、直交解は因子間相関が0という仮定があったはずです。因子分析（直交解）で、3因子が抽出されたとすれば、その3因子、つまり3つの下位尺度間の相関は0であることが望まれます。

実際に自分のデータを使って計算してみるといいのですが、そんなにうまくいかないんです。3つの下位尺度間の相関はそれなりに生じてきます。

さて、なぜでしょうか・・・。Figure 15 を見てみてください29)。こんなイメージです。

まず、因子と項目との関係を考えて見ましょう。因子と項目との間には、因子負荷量（因子と項目との相関）の存在があります。これは、因子に対して、項目ごとに重み付けをしていると考えることができるでしょう。

また、Figure 15 には矢印を入れていないのですが、項目と尺度得点との関係はどうでしょうか。たいていの場合、尺度得点は項目得点の和で表されます。ここには、重み付けがありません。

このような理由により、因子間に相関がないことが仮定されていたとしても、尺度得点間には相関が生じるといえるでしょう。

また、斜交解の場合は因子間相関があるので、納得できると思います。ただ、これは当然なのでですが、因子分析の結果で出力されている因子間相関と、尺度得点間の相関は値が異なります。

29) 図を描くまでもなかったかも・・・。でもせっかく描いたので載せておきます・・・
8 下位尺度の確定

かなり長い道のりでしたが、これまでの過程を経て下位尺度を確定（下位尺度の名称と項目を確定）できます。これでやっと、ものさしを完成することができたということです。もちろん、まともなものさしはできなかった・ということもあります。そんな時は、やり直しきりののみです（もちろん反省込みで）。

確かに、ここまでの道のりは長いです。論文では、結果の最初の方に書いてある部分に相当するのですが、それほど長くは書いてありません。読んでいると、かなりあっさり書いてありました。しかし、実際にかかる時間や手間は、実はこの部分が一番なのです。仮説検証に必要な分析は、最初から目処は立っているので（そのはずなので）、実際はあっという間に終わってしまいました（たぶん）。試行錯誤をする必要がほとんど無いかにらです。

さて、あとは皆さんのがやりたかった分析をするだけです。ゴールは近いかしょう！
9 分析例

最後に、サンプルのデータを使いながら、項目分析から尺度の構成にいたるまでの経過をめぐってみます。おおまかな流れを把握して、自分がやるときの道しるべにしてください。

サンプルデータ 項目：Table 11 に示す通りの 20 項目（ダミーです）

選択肢：5 件法（あてはまらない、あまりあてはまらない、どちらともいえない、ややあてはまる、あてはまる）

コーディング：あてはまらない□1、あまりあてはまらない□2、どちらともいえない□3、ややあてはまる□4、あてはまる□5

調査協力者：254 名の大学生

Table 11 項目内容

A1X : まわりの人がうまく調子をあわせる
A2X : 人に対してはいつも気を配る
A3X : 錯なことがあっても、普通でいられる
A4Y : 小さなことでも気になる
A5Y : 人から噂されているようで気になる
A6X : 快活である
A7Y : ちょっとしたことでも落ち着いている
A8Y : 人が周りにいると気になる
A9X : 動作がきびきびしている
A10Y : 神経質である
A11Y : ちょっとしたことも仕事にならない
A12X : いつも機嫌が良い
A13Y : いつも不安なことがある
A14Y : 人が周りにいると、うっとおしいと思うことがある
A15X : 線引きはすぐに付ける
A16Y : 人の行動が気になることがある
A17X : やらなければならないことは、効率よくやる
A18X : 新しい環境にもすぐに適応できる
A19Y : 頑固である
A20X : 仕事は人よりも速くできる
9.1 項目レベルの基礎的な確認

この20項目について、平均値と標準偏差を算出した結果がTable 12です。

Table 12 記述統計量

<table>
<thead>
<tr>
<th></th>
<th>平均値</th>
<th>標準偏差</th>
<th>平均値</th>
<th>標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1X</td>
<td>3.79</td>
<td>0.95</td>
<td>A11Y</td>
<td>3.05</td>
</tr>
<tr>
<td>A2X</td>
<td>3.44</td>
<td>1.03</td>
<td>A12X</td>
<td>3.31</td>
</tr>
<tr>
<td>A3X</td>
<td>2.77</td>
<td>1.09</td>
<td>A13Y</td>
<td>3.85</td>
</tr>
<tr>
<td>A4X</td>
<td>3.66</td>
<td>1.19</td>
<td>A14Y</td>
<td>3.44</td>
</tr>
<tr>
<td>A5X</td>
<td>3.02</td>
<td>1.33</td>
<td>A15X</td>
<td>2.89</td>
</tr>
<tr>
<td>A6X</td>
<td>3.29</td>
<td>0.97</td>
<td>A16Y</td>
<td>3.59</td>
</tr>
<tr>
<td>A7X</td>
<td>3.35</td>
<td>1.18</td>
<td>A17X</td>
<td>2.63</td>
</tr>
<tr>
<td>A8X</td>
<td>3.02</td>
<td>1.23</td>
<td>A18X</td>
<td>3.11</td>
</tr>
<tr>
<td>A9X</td>
<td>2.70</td>
<td>1.15</td>
<td>A19X</td>
<td>2.79</td>
</tr>
<tr>
<td>A10Y</td>
<td>3.22</td>
<td>1.30</td>
<td>A20X</td>
<td>2.67</td>
</tr>
</tbody>
</table>

項目13, 1などの平均値が少し高いですが、標準偏差はほとんど同じです。
またヒストグラムを描いてみたところ、ほとんどが単峰型でしたが、項目8はFigure 16のような分布をしています。

![Figure 16 項目8の回答分布](image_url)

説明のところでも書きましたが、この段階で項目の採否を決めるのは、より多くの極端なものでなければ無理です。なので、これらの項目には目を付けておくということで次に進めます。
9.2 項目間相関を見てみる

実は（と、もったいぶる必要はないのですか）、先に示した Table 130)が、このデータを用いたものです。なので、項目間相関はそれを見直してみてください。

9.3 因子分析

20 項目に関して、因子分析（主因子法・パリマックス回転）を行いました。その結果として、Table 13 に説明された分散の合計、Figure 17 にスクリーブロットを示しました。

Table 13 説明された分散の合計

<table>
<thead>
<tr>
<th>因子</th>
<th>合計</th>
<th>分散の％</th>
<th>真実値</th>
<th>合計</th>
<th>分散の％</th>
<th>真実値</th>
<th>合計</th>
<th>分散の％</th>
<th>真実値</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,710</td>
<td>54.35%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
</tr>
<tr>
<td>2</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
</tr>
<tr>
<td>3</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
</tr>
<tr>
<td>4</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
</tr>
<tr>
<td>5</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
</tr>
<tr>
<td>6</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
</tr>
<tr>
<td>7</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
</tr>
<tr>
<td>8</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
</tr>
<tr>
<td>9</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
<td>1,370</td>
<td>27.85%</td>
<td>46.18%</td>
</tr>
<tr>
<td>10</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
</tr>
<tr>
<td>11</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
</tr>
<tr>
<td>12</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
</tr>
<tr>
<td>13</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
</tr>
<tr>
<td>14</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
</tr>
<tr>
<td>15</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
</tr>
<tr>
<td>16</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
</tr>
<tr>
<td>17</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
</tr>
<tr>
<td>18</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
</tr>
<tr>
<td>19</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
</tr>
<tr>
<td>20</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
<td>2,311</td>
<td>47.36%</td>
<td>46.18%</td>
</tr>
</tbody>
</table>

因子のスクリーブロット

Figure 17 スクリーブロット

30) 15ページ参照
この結果をみると、スクリーブロットの結果からすると 3 因子をとるのが妥当だといえそうです。そこで再度、3 因子を指定し、因子分析（主因子法・バリックス回転）をしました。その結果として、Table 14 に、回転後の負荷量を示します31)。

補足：表の一部が空白になっていますが、そのセルが .10 以下の負荷量であったためです。SPSS で出力をすると、そのようなセルには「-2.097E-02」などという単位のわからない & 見づらい表記がされます。これは、$-2.097 \times \frac{1}{10^2}$ という意味です。102 の 2 が「02」に対応しています32)。したがって、この値は -0.02097 という非常に小さい値となります。SPSS の出力ではこのような表記はされるのですが、因子分析のオプションで、抑制する最小の絶対値 0 というところがあるので、この値を .10 に設定しておけば .10 以下の値のセルに値は表示されません。

Table 14 3 因子：回転後因子負荷量

<table>
<thead>
<tr>
<th>回転後の因子行列</th>
<th>因子 1</th>
<th>因子 2</th>
<th>因子 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1X</td>
<td>0.744</td>
<td></td>
<td>0.124</td>
</tr>
<tr>
<td>A1Y</td>
<td>0.750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1gY</td>
<td>0.694</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1Y</td>
<td>0.645</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1V</td>
<td>0.637</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1V</td>
<td>0.520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1V</td>
<td>0.529</td>
<td></td>
<td>0.127</td>
</tr>
<tr>
<td>A1V</td>
<td>0.530</td>
<td></td>
<td>-0.221</td>
</tr>
<tr>
<td>A1V</td>
<td>0.530</td>
<td></td>
<td>-0.221</td>
</tr>
<tr>
<td>A1V</td>
<td>0.674</td>
<td></td>
<td>-0.170</td>
</tr>
<tr>
<td>A1V</td>
<td>0.803</td>
<td></td>
<td>0.210</td>
</tr>
<tr>
<td>A1V</td>
<td>0.360</td>
<td>0.211</td>
<td></td>
</tr>
<tr>
<td>A15X</td>
<td>0.126</td>
<td>0.717</td>
<td>0.240</td>
</tr>
<tr>
<td>A6X</td>
<td>0.119</td>
<td>0.636</td>
<td>0.270</td>
</tr>
<tr>
<td>A2X</td>
<td>0.106</td>
<td>0.700</td>
<td></td>
</tr>
<tr>
<td>A12X</td>
<td>0.008</td>
<td>0.666</td>
<td></td>
</tr>
<tr>
<td>A1X</td>
<td>0.238</td>
<td>0.101</td>
<td>0.585</td>
</tr>
<tr>
<td>A16X</td>
<td>0.270</td>
<td>0.585</td>
<td></td>
</tr>
<tr>
<td>A13X</td>
<td>0.421</td>
<td>0.530</td>
<td></td>
</tr>
<tr>
<td>A3X</td>
<td>-0.113</td>
<td>0.147</td>
<td>0.333</td>
</tr>
</tbody>
</table>

因子抽出法：主因子法 回転法：Kaiser の正規化を伴わない逆ハルツ法

* 5 回の各値で回転が収束しました。

この結果と項目内容を照らし合わせると、第 1 因子目には「不安」に関連しそうな項目、第 2 因子目には、仕事の能率のよさを表すような項目、第 3 因子目には、対人関係のよさに関連しそうな項目が集まっているようです。

内容的には解釈はできそうなのですが、因子負荷量を見ると、2 因子目にも 3 因子目にも負荷を持つ項目がいくつか存在しています。数値的に見ると、ここでの 2 因子目と 3 因子目はそれなりに近いものなのでではないかという予測も出来ます。

31) 初期解は省略します
32) 「1.434E-03」は、1.434 $\times \frac{1}{10^3}$ となり、0.001434 という値になります
そこで、項目を削除するなどしてきれない2因子構造を持つ尺度になるようにしていきたいと思います\(^{33}\)。

続いて、2因子を指定した際の、初期解と回転後の因子負荷量をTable 15, Table 16に示します。

Table 15 SPSS出力: 因子負荷行列 (回転前)

<table>
<thead>
<tr>
<th>因子</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1X</td>
<td>0.46</td>
<td>-0.00</td>
</tr>
<tr>
<td>A1Y</td>
<td>0.16</td>
<td>-0.04</td>
</tr>
<tr>
<td>A2Y</td>
<td>0.77</td>
<td><0.00</td>
</tr>
<tr>
<td>A3Y</td>
<td>0.72</td>
<td><0.00</td>
</tr>
<tr>
<td>A1SX</td>
<td>0.64</td>
<td>0.28</td>
</tr>
<tr>
<td>A4Y</td>
<td>0.48</td>
<td><0.00</td>
</tr>
<tr>
<td>A5X</td>
<td>0.45</td>
<td>0.39</td>
</tr>
<tr>
<td>A6X</td>
<td>0.41</td>
<td>0.35</td>
</tr>
<tr>
<td>A7X</td>
<td>0.20</td>
<td>0.43</td>
</tr>
<tr>
<td>A8X</td>
<td>0.22</td>
<td>0.40</td>
</tr>
<tr>
<td>A1X</td>
<td>0.21</td>
<td>0.39</td>
</tr>
<tr>
<td>A1Y</td>
<td>0.18</td>
<td>0.40</td>
</tr>
<tr>
<td>A2Y</td>
<td>0.40</td>
<td><0.00</td>
</tr>
<tr>
<td>A3Y</td>
<td>0.47</td>
<td><0.00</td>
</tr>
<tr>
<td>A4Y</td>
<td>0.37</td>
<td><0.00</td>
</tr>
<tr>
<td>A5Y</td>
<td>0.48</td>
<td><0.00</td>
</tr>
<tr>
<td>A6Y</td>
<td>0.54</td>
<td>0.30</td>
</tr>
<tr>
<td>A7Y</td>
<td>0.40</td>
<td><0.00</td>
</tr>
<tr>
<td>A8Y</td>
<td>0.35</td>
<td>0.25</td>
</tr>
<tr>
<td>A1Y</td>
<td>0.33</td>
<td>0.22</td>
</tr>
<tr>
<td>A2Y</td>
<td>0.23</td>
<td>0.15</td>
</tr>
<tr>
<td>A3Y</td>
<td>0.10</td>
<td>0.43</td>
</tr>
<tr>
<td>A4Y</td>
<td>0.42</td>
<td><0.00</td>
</tr>
<tr>
<td>A5Y</td>
<td>0.12</td>
<td><0.00</td>
</tr>
<tr>
<td>A6Y</td>
<td>0.20</td>
<td>0.40</td>
</tr>
<tr>
<td>A7Y</td>
<td>0.11</td>
<td>0.40</td>
</tr>
<tr>
<td>A8Y</td>
<td>0.17</td>
<td>0.40</td>
</tr>
</tbody>
</table>

因子分析法：主因子法
\(^{33}\) 2因子の因子が絞出されました。5因子の因子が必要です。

Table 16 SPSS出力: 因子負荷行列 (回転後)

<table>
<thead>
<tr>
<th>因子</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1Y</td>
<td>0.44</td>
<td>0.40</td>
</tr>
<tr>
<td>A2Y</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>A3Y</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>A4Y</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>A5Y</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>A6Y</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>A7Y</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>A8Y</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>A9Y</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

因子分析法：主因子法
回転法 Kaiser の正規化されない VARimax法
\(^{33}\) 3因子の因子が絞出されました。

Table 16を見ると、A16が.557, .254というように2つの因子に対してそれなりの負荷量を持っています。そこで、A16を削除してみます。

33) ここでひとつネタをざらしましょう。すでに気づいている人はいるとは思いますが、項目番号がA1XやA4Yとなっているのには意味があります。ここで扱ってきたデータは、2因子(各10項目)からなる既存の尺度を用いて得られたものです。したがって、2因子構造を持つと予測されます。なお、項目番号の後ろのXやYというのは下位尺度を表しています。

Yの因子についてはきれいなですが、どうやらXの方が不安定なようです。
このA16を削除すると、分散の説明率は、40.161から40.364に上昇しました。スクリーブロットは、Figure 18のようになります。これを見ると、Figure 17よりは2因子と解釈しても良いような結果です。回転後の負荷量としてTable 17が得られます。

![Figure 18 A16削除 スクリーブロット](image)

Table 17 A16削除 因子負荷行列（回転後）

<table>
<thead>
<tr>
<th>回転後の因子行列ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>因子</td>
</tr>
<tr>
<td>A16X</td>
</tr>
<tr>
<td>A26X</td>
</tr>
<tr>
<td>A17X</td>
</tr>
<tr>
<td>A15X</td>
</tr>
<tr>
<td>A6X</td>
</tr>
<tr>
<td>A2X</td>
</tr>
<tr>
<td>A0X</td>
</tr>
<tr>
<td>A1X</td>
</tr>
<tr>
<td>A12X</td>
</tr>
<tr>
<td>A3X</td>
</tr>
<tr>
<td>A13Y</td>
</tr>
<tr>
<td>A4Y</td>
</tr>
<tr>
<td>A10y</td>
</tr>
<tr>
<td>A7Y</td>
</tr>
<tr>
<td>A5Y</td>
</tr>
<tr>
<td>A11Y</td>
</tr>
<tr>
<td>A19Y</td>
</tr>
</tbody>
</table>

因子抽出法：主因子法
回転法：Kaiserの正規化を伴わないパリマックス法

さらに、尺度を精練させていきます。

49
先ほどと同様に、各因子に負荷を持ち、かつその差が小さい項目として、A14, A3, A1があります。これらを削除してみると、説明率は 42.900 となり、スクリーブロットは Figure 19、因子負荷は Table 18 のようになりました。内容的な解釈は別にして、数値の上では 3 因子の時に比べて、きれいな因子構造になっています。

Figure 19 A16, A1, A14, A3 削除 スクリーブロット

Table 18 A16, A1, A14, A3 削除 因子負荷量（回転後）

<table>
<thead>
<tr>
<th>因子</th>
<th>回転後の因子行列*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4Y</td>
<td>.760</td>
</tr>
<tr>
<td>A13Y</td>
<td>.752 .150</td>
</tr>
<tr>
<td>A10Y</td>
<td>.707 .135</td>
</tr>
<tr>
<td>A7Y</td>
<td>.698 .108</td>
</tr>
<tr>
<td>ASY</td>
<td>.649</td>
</tr>
<tr>
<td>A11Y</td>
<td>.607</td>
</tr>
<tr>
<td>A9Y</td>
<td>.514</td>
</tr>
<tr>
<td>ASY</td>
<td>.464 -.112</td>
</tr>
<tr>
<td>A20X</td>
<td>.753</td>
</tr>
<tr>
<td>A17X</td>
<td>.734</td>
</tr>
<tr>
<td>A15X</td>
<td>.119 .712</td>
</tr>
<tr>
<td>A9X</td>
<td>.112 .692</td>
</tr>
<tr>
<td>A18X</td>
<td>.661</td>
</tr>
<tr>
<td>A6X</td>
<td>.576</td>
</tr>
<tr>
<td>A2X</td>
<td>.544</td>
</tr>
<tr>
<td>A12X</td>
<td>.445</td>
</tr>
</tbody>
</table>

因子抽出法: 主因子法
回転法: Kaiser の正規化を伴わないバリックス法
* 3 回の反復で回転が収束しました。
ここでは、数値のみを見て項目を削除してきましたが、実際には項目内容をよく見て考えていきましょう。

当然なのですが、削除する項目、さらにはその順番でさえ結果が異なってきます34）。したがって、因子分析は何通りも何通りもやってみることが必要です。余計なことかもしれないませんが、この試行錯誤をしている時に、自分がどんな基準でどの項目を削除していったかをメモしておくないと、後から再現できなくなる可能性もあるので注意してください。

9.4 項目のピックアップ

さて、因子分析の繰り返しによってそれなりに納得できる結果が得られたら、その結果を用いて尺度を構成します。ここでは、A16, A1, A14, A3 を削除した結果を採用します。

1 因子目には、A4, A13, A10, A7, A5, A11, A19, A8 の 8 項目が、2 因子目には、A20, A17, A15, A9, A18, A6, A2, A12 の 8 項目が大きな負荷を示しています。

ここで項目内容を見てみましょう。

第 1 因子には、「人から噂されているようで気になる」、「いつも不安なことがある」など不安傾向を示すような項目からなっています。また、第 2 因子には「やらなければならないことは、効率よくやる」「新しい環境にもすぐ適応できる」など適応に関するような項目で構成されています。

34) そこまで大幅にはないですけどね

51
9.5 信頼性の確認

下位尺度が決定したら、信頼性係数を算出してみます。例として、第1因子（Y）の8項目の間の出力結果をFigure 20に示します（この形の出力を得るには、信頼性係数を算出する際に、「統計のα項目を削除した時の尺度αにチェックを入れておくことが必要です）。

***** Method 1 (space saver) will be used for this analysis *****

RELIABILITY ANALYSIS - SCALE (ALPHA)

<table>
<thead>
<tr>
<th>Scale</th>
<th>Corr.</th>
<th>Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>Variance</td>
<td>Item-</td>
</tr>
<tr>
<td>Deleted</td>
<td>Deleted</td>
<td>Correlation</td>
</tr>
<tr>
<td>A4Y</td>
<td>21.3201</td>
<td>37.1670</td>
</tr>
<tr>
<td>A13Y</td>
<td>21.5612</td>
<td>37.8091</td>
</tr>
<tr>
<td>A10Y</td>
<td>22.1799</td>
<td>37.9414</td>
</tr>
<tr>
<td>A7Y</td>
<td>22.0822</td>
<td>38.6581</td>
</tr>
<tr>
<td>A5Y</td>
<td>22.3957</td>
<td>38.2509</td>
</tr>
<tr>
<td>A11Y</td>
<td>22.3525</td>
<td>40.0007</td>
</tr>
<tr>
<td>A19Y</td>
<td>22.5746</td>
<td>41.1045</td>
</tr>
<tr>
<td>A8Y</td>
<td>22.4234</td>
<td>41.3279</td>
</tr>
</tbody>
</table>

Figure 20 信頼性係数の SPSS 出力

この出力で、重要な箇所に網掛けをしました。まず、信頼性係数αは一番最後に出ていいる「Alpha $= .8493$」というところです。

もう1つ、「Alpha if Item Deleted」という値が各項目ごとに算出されています。これは、もしこの項目がなかったら残りの項目群でいくつの信頼性係数αが得られるかαを示しています。つまり、Alpha = の値よりも、この値が大きくなっている項目は、信頼性係数αとしては邪魔をしている項目だといえます。この例では、A8Y という項目を削除した時には、0.8508 という信頼性係数が得られるということです。

補足：因子分析で尺度を洗練させていく段階で、項目削除の基準として信頼性係数を含めていませんでしたので、削除の基準にこの結果を用いることも可能です。
話を戻して、このデータの結果ですが、第1因子では、.85、第2因子では.85の相関係数が得られました。
尺度構成を目的とした研究であっても、既存の尺度を使用する研究であってもこの段階までは、確認しておくべきでしょう。
尺度構成を目的とした研究であれば、ここから妥当性の検討に入ります。

10 引用文献・参考文献・おすすめ文献など

引用文献

Muraki, Eiji 2001 RESGEN4:シミュレーション・プログラム
日本教育心理学会 (編) 2003 教育心理学ハンドブック
柳井晴夫・繋検算男・前川真一・市川雅教 著 1990 因子分析 - その理論と方法 -
朝倉書店

参考文献・おすすめ文献

このテキストを作る際に参考にした文献、因子分析を説明した文献を脇田のコメントとともに列挙しておきます。
三土修平 2001 数学の要らない因子分析入門 日本評論社
□ たしかに数式は使っていない。
因子分析のイメージをつかむにはいい本。
南風原朝和 2002 心理統計学の基礎 総合的解釈のために 有斐閣
□ 心理学で用いる統計的な考え方が網羅してあって分かりやすい。
ただ、多少数式が出てくるので難しく感じるかも・・・
野口裕之 心理教育統計学のテキスト（南山大学）
野口裕之 計量心理学演習のテキスト（因子分析）（名古屋大学）
野口裕之 計量心理学のテキスト（テスト理論）（名古屋大学）
□自分が教えてもらったときのテキスト。
授業で聞いていないからかもしれないが、とっつきやすい。
芝祐順 1979 因子分析法 第2版 東京大学出版会

柳井他と同様、難しい。かなり上級。

浦上昌則 心理測定法・心理調査法のテキスト（南山大学）

「第1部 論文を読むために必要な統計知識」
「第2部 調査をするために必要なスキル・基礎知識」

理論というよりは、実用例が豊富。勉強させていただきました。

柳井晴夫・繋桝算男・前川真一・市川雅教 著 1990 因子分析 - その理論と方法- 朝倉書店

難しいです。かなり高度。

松尾太加志・中村知晴 2002 誰も教えてくれなかった因子分析 北大路書房

わかりやすいと言えばそうかもしれないんですが…。

後記

ここまで長くなるとは予想していませんでした。何とか形になったでしょうか。因子分析についてのテキストを作るというお達しがあってから、半年以上…。自分自身よく理解できていない箇所が多くてそれなり大変だったんですが、勉強になりました。

最後になりましたが、内容に関する貴重なご意見をいただき、また下手な文章を大幅に修正していただいた浦上先生に感謝いたします。

ご意見がある方、間違いなどを発見された方、お気軽にご連絡ください。できる限り対応させていただきます。

なお修正情報は、http://psycho.libitum.net/ の中で公開しています。

名古屋大学大学院・教育発達科学研究科心理発達科学専攻

脇田貴文 irt@spiritoso.jp