12日目:因子分析(2)

さて、昨日はいろいろと分析を試していただけたでしょうか? 因子分析は、かなりの試 行錯誤を必要とするので、じっくりと構えて取り組む必要があります。

投入する変数を削除することにも挑戦した人はわかるでしょうが、以下のような変数をま とめておく作業は、ここで結構役立ちます。ここをちょっと変えるだけで、投入する変数を 簡単に(?)変えられるからです。

xtb <- c("b1","b2","b3","b4","b5","b6","b7","b8","b9","b10","b11", "b12","b13","b14","b15","b16","b17","b18","b19","b20") xb <- x[xtb]</pre>

今日は,因子分析結果として表示されるものの説明と,結果をエクセルに移しての加工に ついて説明します。

さて、因子分析の結果ですが、SPSS よりも多くの情報を示してくれます。私もよくわかっていない部分も少なくないですが、とりあえず、「お約束」のあたりを紹介しておきます。

f1 <- fa(xb, nfactors=3, fm="ml", rotate="promax")
print(f1, sort=TRUE, digit=3)</pre>

とりあえず,以上のように,抽出因子数は3,抽出方法は最尤法,プロマックス回転をかけ,パターンの大きさによるソートをかけた結果の出力を参考にします。

最初の2行は、指示を再表示しているようなものです。その下に負荷量(因子パターン) の行列が示されています。以下のように書いてありますね。

Standardized loadings (pattern matrix) based upon correlation matrix

その下が行列なのですが、これまでに SPSS などで因子分析を行った経験のある人なら違 和感があると思います。

Sta	ndardi	zed loa	adings	(patterr	n matri	ix) base
	item	ML3	ML1	ML2	h2	u2
b12	12	0.741	0.109	-0.005	0.644	0.356
b17	17	0.721	0.121	0.059	0.654	0.346
b7	7	0.652	0.191	-0.048	0.573	0.427
b19	19	0.648	-0.350	-0.019	0.302	0.698

列名を見ると、最初に項目名があり、item は(たぶん)列番号、その後に各因子がきて、 h2(本来ならh²)つまり共通性、そして u2(本来なら u²)つまり独自性が並んでいます。

因子名は、「Factor 1 とか F1 とかでないの?」と思う人もいると思いますが、R は因子抽 出法の略記(つまり、ML とか、PA とか、GLS とか)に番号を付けたものを因子名にして いるようです。

さらに、(これは場合によって違いますが…) 1, 2, 3 という順番に並ばないこともありま す。今回の例がそうなのですが、3, 1, 2 という並びになっています。これはパターンの値 とソートの関係のようです。最も高いパターンを行列の左上にもってきて、それを基準にソ ートしているようです。ちなみに、ソートをしない場合は 1, 2, 3 という順で表示されるの で、一度確認してください。

パターン行列の下にも、小さな表が2つ出てきます。上の表の、SS loadingsが「負荷 量の二乗和」、Proportion Varが「寄与率」、Cumulative Varが「累積寄与率」です。 下の表は因子間相関です。もちろん因子間相関は、斜行回転の場合に表示されます。

その下は各種適合性に関する情報です。χ²値とか、各種情報が出ています。ここでは、説 明は省きますので(苦笑)調べてみてください。

この因子分析について、ひとつだけ注意喚起を。現在のバージョンでは修正されています が、少し前のバージョンの時に、sort=TRUEを行った際の表示が間違うということがあった ようです。ソートはしてくれるのですが、なぜかu2だけがそのままになるというプログラム 上のミスです。共通性は因子で説明される部分、それを1から減じたものがu2、すなわち独 自性なので、共通性+独自性=1という等式が成り立ちます。

古いバージョンのまま使っている場合は、少し気をつけておいた方がよい点だと思います。

さて、Rの因子分析の出力では、項目名しか確認できま せん。これでは項目のまとまりから因子を推測することが 難しくなってしまいます。そこで、実際の項目内容を見な がら解釈を進めたいという場合の(できるだけ簡単…だと 思う)やり方を紹介しておきます。

まずエクセルで新しいファイルを開いておきます。次に, 右図のように項目名と項目内容を記していきます。

次に、隣のC列を空欄にしておいて、D1に

=VLOOKUP(C1, \$A\$1: \$B\$20, 1, 0) と入力します。さらに E1 に=VLOOKUP(C1, \$A\$1: \$B\$20, 2, 0) と入力します。 どちらも「#N/A」と表示されますが,この段階では気にせ ず進みます。この入力した D1, E1 の内容を項目 b20 の位 置,つまり 20 行目 (D20, E20) までコピペしておきます。

	A	В	С	D	E
1	b1	親近感のある		#N/A	#N/A
2	b2	おしゃれな		#N/A	#N/A
3	b3	高級感のある		#N/A	#N/A
4	b4	操作性のよい		#N/A	#N/A
5	b5	洗練された		#N/A	#N/A

1 b1 2 b2	1 2	親近感のあ	る
2 bá	2		/ w
	_	おしゃれな	
3 b(3	高級感のあ	る
4 b4	4	操作性のよ	(J)
5 bt	5	洗練された	
6 b#	ô	高価な	
7 bi	7	こだわりがる	ある
8 b6	3	無機質な	
9 b9	9	使いやすそ	5
10 b1	10	かわいい	
11 b1	11	近寄り難い	
12 b1	12	有名な	
13 b1	13	機能的な	
14 b1	14	都会的な	
15 b1	15	安心感のあ	る
16 b1	16	そそられる	
17 b1	17	安定してい	る
18 b1	18	りっぱな	
19 b1	19	便利な	
20 bá	20	古典的な	
21			

以上でエクセル側の設定は終 わりです。

Rに移って,因子分析を実行します。 その結果(パターン行列の部分)をコ ピーし,エクセルのどこか空いている ところ(先の項目リストとは別のシー トでも構いません)にペーストしてく ださい。ペースト後には、ウィザード を使って,きれいに区切っておきまし ょう。右図のような感じです。

そして変数の部分をコピーし,先ほ ど空けておいたC1からC20の部分にペ ーストします。すると,DおよびE列 に,Cと同様に並び替えられた変数名 と項目が表示されます。

これで因子分析の結果順に並び替え

Ι	J	К	L	M	N	0	
	item	ML3	ML1	ML2	h2	u2	
b1 2	12	0.741	0.1 09	-0.005	0.644	0.356	
b1 7	17	0.721	0.121	0.059	0.654	0.346	
b7	7	0.652	0.191	-0.048	0.573	0.427	
b19	19	0.648	-0.35	-0.019	0.302	0.698	
b9	9	0.635	-0.241	-0.01	0.299	0.701	
b4	4	0.612	0.215	0.035	0.576	0.424	
b1 5	15	0.596	0.072	0.347	0.642	0.358	
b2	2	0.423	0.292	-0.209	0.356	0.644	
b16	16	0.369	0.331	0	0.374	0.626	
b10	10	0.301	0.264	-0.127	0.22	0.78	
b20	20	0.136	-0.808	-0.087	0.604	0.396	
b1 4	14	0.123	0.761	-0.003	0.691	0.309	
b5	5	0.117	0.755	0.095	0.737	0.263	
b13	13	-0.026	0.602	-0.126	0.314	0.686	
b1	1	-0.004	0.513	-0.181	0.233	0.767	
b8	8	-0.008	0.391	0.297	0.313	0.687	
b11	11	0.014	-0.037	0.853	0.714	0.286	
b6	6	0.074	0.099	0.733	0.635	0.365	
b3	3	0.023	-0.045	0.711	0.495	0.505	
b18	18	0.028	0.199	0.447	0.311	0.689	

1日 30 分くらい, 30 日で何とか R をそこそこ使えるようになるための練習帳: Win 版 ver. 0.95 (ほぼ完成版)

られた項目リストができました。後はこの部分をコピーして、必要なところにペーストして ください。もちろん、普通にペーストするのではなく、メニューバーから「形式を選択して ペースト」、そして「値」を選んでおきます。

これを作っておけば,後はとても 楽になると思います。いろいろと指 定を変えて因子分析をし,最も適当 なものを探してください。

	A	В	С	D	E
1	b1	親近感のある	b1 2	b1 2	有名な
2	b2	おしゃれな	b1 7	b1 7	安定している
3	b3	高級感のある	b7	b7	こだわりがある
4	b4	操作性のよい	b1 9	b1 9	便利な
5	bБ	洗練された	b9	b9	使いやすそう

● =VLOOKUP(C1,\$A\$1:\$B\$20,1,0)

の部分の説明を簡単にしておきます。関数名が示すように、LOOK-UP するわけですが、カ ッコ内は「,」で4つに区切られます。その最初が「何を探すか」です。次が「どこを探す か」。3つ目が「どこを探すか」で指定されたエリアの「何列目を結果として表示するか」。 4つ目は、とりあえず0にしておけばよい、と考えておいてください。つまり、 (C1,\$A\$1:\$B\$20,1,0)は、C1と一致する行を\$A\$1:\$B\$20の範囲から検索して、その範 囲の1列目(つまり今回ならA列)に入っているデータを表示しなさいということになりま す。同様に=VLOOKUP(C1,\$A\$1:\$B\$20,2,0)は、その範囲の2列目(つまりB列)に入 っているデータを表示してくれます。

本日はここまでにしますので、いろいろな手法の分析を試してみてください。