THE ONSET OF COMPLEX NPs IN CHILD PRODUCTION

KEIKO MURASUGI

Nanzan University and University of Connecticut

1 Introduction

Current linguistic theory attempts to explain the properties of the language faculty endowed in all human beings, and the path of the linguistic development in children proceeds from the initial state to a steady state of grammar. The intermediate stages are composed of a series of grammatical states, and reflect the possible linguistic variations available in human language.

This paper sketches out the properties of the intermediate acquisition stages before the complex NPs start to appear in child production, mainly focusing on the very typical syntactic errors Japanese-speaking children make, and providing theoretical explanations for them.

The properties in complex NPs in adult Japanese may differ from those in European languages in that, for example, the structure is TP (Saito 1985), and the subjects may appear with genitive Case (Harada 1971, Miyagawa 1993, 2009, Hiraïwa 2001, Saito 2004, among others).

(1) a. [TP Taroо-ga/-no katta] hon
 -Nom/-Gen bought book
 ‘the book that Taro bought’

b. [TP kami-ga/-no nagai]hitо
 -Nom/-Gen long person
 ‘a person whose hair is long’

The genitive subject is not in the matrix clauses in adult Japanese as in (2), but children produce a sentence whose subject is erroneously Case marked with a genitive no.

I am grateful to the organizers and the audience at WAFLI 6, and the scholars who have involved in the activities of Center for Linguistics at Nanzan University for valuable discussions on the topic discussed in this paper, although I cannot name them all: Hiroki Mecawa, Arusa Yokogoshi, Shigeru Miyagawa, Jacqueline Kornfilt, Manomo Saito, Koji Sugisaki, Daiko Takahashi, Tomoko Hashimoto, Chisato Fujii, Tomomi Nakatani-Murai, Naoko Sawada, Nilufer Sener, Serkan Sener, Kensuke Takina, Yurie Tsurubara, and John Whitman. This study was supported in part by a JSPS Grant-in-Aid (C) (#20520307), the Pech Research Grant I-A-2 from Nanzan University, and also by the grant from the Japanese Ministry of Education and Science to Center for Linguistics at Nanzan University for establishment of centers for advanced research.
Some of the Japanese-speaking children also overgenerate complementizer no (in Tokyo Dialect) on the prenominal sentential modifiers, once they start producing complex NPs.

The underspecification of tense features is concretized in very young Japanese-speaking children’s errors of tense and Case. Very young children produce “non-finite forms” in matrix contexts. However, there is cross-linguistic variation with respect to the form, and we will show that the [-bare stem] language-speaking children (e.g., Japanese-, Korean- and Turkish-speaking children) aged one to two, produce quite different forms of Root Infinitives from those found in Dutch and German.

The underspecification of tense features also causes the Japanese-speaking children to produce Case-marking errors. We argue that this type of syntactic error is much related to the acquisition of the structure of complex NPs. By arguing that the retreatment from the overgeneration of complementizer in (3) triggers the children’s retreatment from the erroneous genitive Case marking, we aim to clarify the nature of the developmental path, or the series of intermediate states that children proceed in order to attain the finite state of Japanese.

2 The Overgeneration of “no” as a Trihedral Phenomenon

2.1 Three Approaches to the Issues on Overgeneration of “no”

In adult Japanese, a pronoun (roughly corresponding to one in English), the genitive Case marker (roughly corresponding to ‘s or of in English), and a complementizer (i.e., that in the head of the presuppositional phrase in the cleft sentences (e.g., It is in Boston that Satti met Ken for the first time.) and the relative pronoun in English) are realized as no, and it is very well known that Japanese-speaking children between the ages of one and four years overgenerate no as in (4).

(4) a. howashi ookii *no howashi (=boosti) (late 1 year old) (Nagano 1960) chopsticks big *NO chopsticks ‘chopsticks, the big ones, chopsticks’

In the history of Japanese acquisition, three hypotheses have been proposed regarding the syntactic status of the overgenerated “no”: (i) “no” as a pronoun (Nagano 1960, Murasugi and Hashimoto 2003), (ii) “no” as the genitive Case marker (Iwabuchi and Muraishi 1968, Clancy 1985, Yokoyama 1990, among others), and (iii) “no” as a complementizer (Murasugi 1991).

The present section argues that three hypotheses proposed in the past five decades are, in fact, basically all correct. First, the pronoun no is “overgenerated” as in (4a), when children around age one start merging elements with a smaller pronominal element (N’) before merging two major syntactic categories. Second, the genitive Case no is inserted between “adjectives” and the head nominal as in (4b), as some type of the adjectives are bootstrapped as nominal elements in child grammar. Third, those children between the ages of two and four who pick up the CP value rather than TP value for the structure of complex NPs, overgenerate complementizer no at the onset of production of complex NPs, as shown in (4c). Thus, the overgeneration of no, which looks like a single phenomenon, is composed of three independent modules. Thus, the overgeneration phenomenon found frequently in the natural production of children is recaptured as a trihedral phenomenon.

2.2 Overgeneration of Complementizer “no” and Relative Clause Parameter

Japanese is a language where discourse plays an important role to license the gap not only in sentences but also in relative clauses. The prenominal sentential modifier is not followed by the overt complementizer. The complementizer no is obligatory as the head of the presuppositional phrase in the cleft sentence as in (5b), but it is never allowed in the relative clauses.

(5) a. Ken-ga robusutaa-o hazimete tabeta (*no) mise -Nom lobster-Acc for the first time ate restaurant ‘the restaurant that Ken ate lobster for the first time’

b. Ken-ga robusutaa-o hazimete tabeta-no-wa bosuton de da -Nom lobster-Acc for the first time ate-Comp-Top Boston in Copula ‘It is in Boston that Ken ate lobster for the first time.’

This fact sharply contrasts with languages such as English, where the complementizer that is employed for both constructions. Saito (1985) argues that a relative clause in Japanese, unlike an English one, has an IP/TP structure, rather than a CP structure. According to him, Japanese relative clauses lack a C to host a complementizer, and they are not operator-oriented. The Aboutness Condition (Kuno 1973) licenses the relative clause, when the “relativized” element is an argument base-generated as pro in the relative clause. Thus, Japanese does not have the counterpart of the complementizer that in the English complex NPs, for example, a cake that Diane baked.

Saito’s (1985) analysis is supported by the analysis of Japanese-speaking children’s errors. Tokyo-dialect speaking children around two to four years of age overgenerate “no” or ga in
The Onset of Complex NPs in Child Production

2.3 The Onset of Merge Operation: Early Utterances with Pronoun “no”

Overgeneration of “no” is found, however, at a very early stage of language acquisition, much earlier than the age that a complementizer appears in child production, or even when children cannot merge two syntactic elements. To provide an account for the extremely early appearance of the erroneous no, the Pronoun hypothesis has been proposed by Nagano (1960) and Murasugi and Hashimoto (2004).

The argument for the Pronoun hypothesis is simple: The overgenerated no cannot be a genitive Case marker nor a complementizer, because the “overgeneration” takes place at around one year as in (8), when there is no genitive Case marker found in the child production as in (9), but the pronoun “no” as in (10). Examples are cited from Nagano (1960).

(8) a. howasi ookii *no howasi (=o-hari) (2;1)
 b. Amuna (=Harumi) tittai *no Amuna (2;1)

(9) ke...mama [e] ke, mama [e] ke, mama (2;0)

(10) a. ookii no (2;1) b. tittai no (2;1)

In (8a) and (8b), “no” looks like to be “erroneously” inserted between an adjective and a NP at 2;1. The “overgeneration” in question appears before the genitive Case marker no is inserted between two NPs as in (9), but after the pronoun “no” is correctly produced as in (10). According to Nagano (1960), it is only one month later, at 2;2, that the genitive Case marker appears in the natural production, as shown in (11).

(11) Papa-no buton (=zubon) (2;2)

The parallel developmental stage was observed by Hashimoto’s longitudinal study with Akkon (Murasugi and Hashimoto 2004), and Nakatani’s longitudinal study with Yuta (Murasugi, Nakatani and Fuji 2009b). Both subjects started “overgenerating” no before the genitive Case marker was inserted between two NPs. Furthermore, there was a brief pause (about 0.48 seconds by the PRAA analysis) between the NP headed by the pronoun no and the referential NP.

(12) a. hon, tanasii no, hon da (1;10)
 b. [hon /pause/ tanasii no]. /pause/ hon da

Our PRAA analysis confirmed that this result sharply contrasts with the overgeneration of a complementizer observed at a later stage, where there is no pause between complementizer no and the head NP. (See Murasugi, Nakatani and Fuji 2009b for the PRAA analysis.)
Then, why do the very young children employ the pronoun *no as the “head” nominal at the onset of two-word stage? Why do children use the “light” nominal as the head (e.g., *ookii *no (a big one)) to create the syntactic frame at the stage (i) before the merger of the two major syntactic elements starts to be produced and (ii) when there is no genitive Case marker? Why do the children sometimes repeat the referential NP (e.g., *bosi (a hat)) after the NP headed by the pronoun *no, making a brief pause between them (e.g., [ookii *no, pause/ boosti (big one, hat))? I conjecture that this stage would reflect one of the earliest morphological realizations of the merger, an operation considered to be a part of Universal Grammar in the Minimalist Program. When children cannot create the modification structure with two major syntactic categories, they produce phrases headed by a pronoun *no first, and rephrase the head nominal pronouncing a full NP as the second independent NP. The onset of the merger operation starts with the phrases headed by the smaller category with less semantic content, i.e., the pronoun *no (which corresponds to *one in English, both being categorized as a N° in the X'-theory), followed by the adult-like merger of two major syntactic categories at the two-word stage. This hypothesis seems to hold as there is a pause between the pronoun *no and the second NP.

The argument so far indicates that there are at least two sources for the apparently single phenomenon: The one is a pronoun as the onset of the merger operation, and the other is a complementizer as the onset of the complex NPs.

2.4 Genitive Case “*no*” Marked on the Adjectives Miscategorized as Nouns

However, another empirical problem arises. Those children around age two, who have already acquired the genitive Case marker insertion between NPs and have no problem in combining two elements, still “overgenerate” *no. Crucially, those children are not in the stage where they can produce the cleft sentences and the complex NPs either. Given the discussion in 2.2 and 2.3, the “overgenerated” *no found then cannot be a pronoun nor a complementizer.

Murasegaki, Nakatani and Fuji (2009b) argue that there is another stage, where the genitive Case marker *no is erroneously marked inside NPs. The three types of *no, i.e., pronoun, genitive Case, and complementizer, emerge in that order, as exemplified in (13a) through (13c).

\[(13)\]
\[\begin{align}
\text{a.} & \text{ hon, atarasi *no, hon da (Yuta 1;10)} & \text{b.} & \text{ siroi *no gohan (Yuta 2;0)} \\
& \text{ book new N°(one) book Copula white Gen rice} & & \text{‘a book, a new one, (this is) a book’} \\
& \text{‘the white rice’} & & \text{‘the white rice’} \\
\text{c.} & \text{ Nonne siteta *no ko? (Yuta 2;2)} & & \\
& \text{ sleeping-do-was Comp child ‘(Do you mean) the prairie dog that was sleeping?’} & & \\
\end{align}\]

At this mysterious stage, genitive Case marker is correctly inserted between two NPs.

\[(14)\]
\[\begin{align}
\text{a.} & \text{ Ko (=kore) otoosan-no hanasi da yo (Yuta 1;11)} & \text{b.} & \text{ Ringo-no ozityu-an ga... (Smihare 2;0)} \\
& \text{ this father-Gen story Copula Int ‘This is a story of father.’} & & \text{apple-Gen man-Nom ‘The man (who sells) apples is...’} \\
\end{align}\]

The Onset of Complex NPs in Child Production

Unlike the case of a pronoun, PRAAT analysis indicates that there is no pause found between “*no*” and the NP following it. Semantically, the “overgeneration” is found after the two-word stage, at around two, with limited adjectives such as color, size, shape, and state.

\[(15)\]
\[\begin{align}
\text{a.} & \text{ atarasi *no kami (Yuta 1;11)} & \text{b.} & \text{ siroi *no gohan (Yuta 2;0)} \\
& \text{ new Gen paper ‘a new paper’ white Gen rice ‘white rice’} & & \text{c.} & \text{ Tsai *no buubu too na yo (Sunihare 1;11)} \\
& \text{ small Gen car passed Int ‘a small car passed.’} & & \text{ ‘the hare’s house’} & \text{ ‘the hare’s house’} \\
\end{align}\]

Yokoyama (1990) argues that the erroneous “*no*” is a genitive Case marker, as the genitive “*no*-insertion, generating “NP + *(no ‘genitive’) + NP” array as in (16), is acquired earlier than the overgeneration of *no. He makes an interesting observation here: Genitive *no is overgenerated only with adjectives referring to color, size, and shape (e.g., akai (red), ookii (big), maarui (round)) as in (17), but never with other adjectives (e.g., abunai (dangerous), yasusai (kind)).

\[(16)\]
\[\begin{align}
\text{a.} & \text{ usagi *(no) ie hare Gen house round Gen poop ‘a round poop’ (Yokoyama 1990)} & & \text{b.} & \text{ hey *(no) kataudge cleaning-up room Gen ‘the cleaning up of the room’} \\
& \text{‘the hare’s house’} & & \text{‘the cleaning up of the room’} \\
\end{align}\]

Yokoyama’s apparently curious generalization is further confirmed by the observational studies and corpus analysis (Murasegaki and Hashimoto 2004, 2006, Murasegaki, Nakatani and Fuji 2009b). Only the adjectives referring to the sense of touch and sight (e.g., color, size, shape, state, temperature) are associated with “*no*” in the early-2-year-old children who have acquired the obligatory genitive Case marker insertion rule between two NPs, as exemplified in (18).

\[(18)\]
\[\begin{align}
\text{a.} & \text{ Kore maarui *(no yatu (Yuta 2;2))} & \text{b.} & \text{ Akai *(no) batu kita (Sunihare 2;1)} \\
& \text{ this round Gen thing red Gen bus came ‘A red bus came.’} & & \text{‘is a round thing.’} \\
\end{align}\]

Then, how could the curious descriptive generalization be theoretically explained? Suppose that the adjectives referring to the senses of touch and sight (e.g., color, size, shape, state, temperature) are misclassified as nominals. Then, those children who already know the system of genitive Case marking, “correctly” assign the genitive *no* to the “nominals” (which are, in fact, adjectives in the adult grammar), as shown in (15), (17), and (18).

The misclassification in early grammar acquisition has been widely reported in the previous literature. First, the syntactic distributional properties of adjectives place them to be halfway between nouns (Gassar and Smith 1998) and verbs (Polinsky 2005) (e.g., It’s [big], It [dropped], It’s [a dog]). Adult Japanese is not an exception: Japanese adjectives can be followed by a polite sentence-ending marker, “desu” (e.g., okai desu (is red ‘Adjective +polite’)), just like nominals (e.g., aka desu (is a red color ‘Nominal +polite’)); while adjectives inflect with tense (e.g., ookii (is big) vs. ookik-atta (was-big)), just like verbs (e.g., tabe-ru (eat) vs. tabe-iru (ate)). Hence, there’s always the possibility that children syntactically bootstrap adjectives as nouns or verbs.
Semantically, it is well attested that young children, typically under age 2;6, show a noun bias, and the adjective is difficult to acquire because it is "a fluid category" (Gassar and Smith 1998; Bermann, 1998; Polinsky 2005, among others). It has been also pointed out that the dimensional adjectives referring to the perceptible properties of individual objects are acquired late (Carey 1982, Sandhoffer and Smith 2001, among others) and children tend to bootstrap the adjectives of color, size and shape as the object categories, i.e., nouns. Japanese is not an exception: Japanese-speaking children who insert the genitive Case marker between "adjectives" and the head nominal can be considered to be in the stage where they semantically bootstrap the adjectives of color, size and shape as nouns, and correctly insert genitive no between the category with a nominal feature (according to their grammar, although these are in fact adjectives in adult Japanese) and the head NP.

This hypothesis is further confirmed by the fact that the children overgeneralizing no only on those adjectives referring to color, shape, and size (e.g., *ittai, maaru, ookii (small, round, big)), erroneously use them as argument associated with nominative Case marker ga (e.g., *ittai/maaru/ookii-ga (small/round/big-Nom) as shown in (19a)), and also erroneously use them (e.g., *kiri (yellow), *akai (red)) to refer to the concrete objects, as shown in (19b).

(19) a. *Tittai-ga atte *maaru-ga atte...konna *ookii-ga atte... (Yuta 2;2)
 is-small-Nom be is-round-Nom be such is-big-Nom be
 'There is a (a) small (circle), (a round (one), and such (a) big (one)).'
 (The child is drawing a picture.) (Adult form: Tittai/maaru/ooki-no (one))

b. *Kiroi to *akai to (Sumihare 2;9)
 is-yellow and is-red and (They are) a yellow (crayon) and a red (crayon).
 (Adult form: kiroi/akai-no (yellow/red one), or kiroi/akai (yellow/red))

Furthermore, as indicated in Table 1, those children overgeneralizing no produce only the present forms for those adjectives, but never the inflected forms. In contrast, the other types of adjectives (e.g., itai (painful), omoi (heavy), kasaai (smelly)), which are not erroneously genitive Case marked, inflect with tense, appear only in the predicative position, behaving like verbs.

Table 1: The Age of the First Appearance of the Present-/Past- Tense Forms of Adjectives by
 Sumihare (~$ (CHILDES)) and Yuta (¥) (Murasugi, Nakatani and Fuji 2009b)

<table>
<thead>
<tr>
<th>Nominal-like Adjectives (of Touch and Sight)</th>
<th>Verb-like Adjectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjectives</td>
<td>Present-tense</td>
</tr>
<tr>
<td>S ookii ‘big’</td>
<td>ooki-I (1;11)</td>
</tr>
<tr>
<td>S akai ‘red’</td>
<td>akai-I (1;11)</td>
</tr>
<tr>
<td>S kari ‘white’</td>
<td>kari-I (2;2)</td>
</tr>
<tr>
<td>Y ookii ‘big’</td>
<td>ooki-I (1;8)</td>
</tr>
<tr>
<td>Y niisai ‘small’</td>
<td>niisai-I (1;11)</td>
</tr>
</tbody>
</table>

Thus, the mysterious phenomenon found in addition to the pronoun-no-type phenomenon and the complementizer-no-type phenomenon is explained: It is the stage where the genitive Case marker is inserted in the adult way between the misclassified adjectives and the head nominal. The Japanese syntax in such that the genitive Case marker is inserted even between adjectival nominals (e.g., ame no hi (rain-Gen day, meaning ‘a rainy day’)), and the misclassification of

adjectives as nouns in early grammar of Japanese is concretized as the overgeneralization of genitive no.

The Genitive Case Hypothesis discussed above does not falsify the other two hypotheses, crucially, the third stage of the overgeneralization of no as C. One Tense comes be fully morphologically realized, the overgeneralization of no as C starts to appear with the tensed prenominal sentential modifiers in NPs as well as with adjectives. Recall here also that in Toyma dialect and Korean, the overgenerated item found then is not a genitive Case marker (no nor ny), but it is rather a complementizer (ge and kes respectively).

The overgeneralization of "no", which apparently looks like a single phenomenon, thus, includes three parts (Trihedron), i.e., "no" as (i) pronoun (N') at around age one and two, (ii) genitive Case marker at around age two, and (iii) complementizer (C) between the ages of two and four. The 50-year debate in the field of Japanese acquisition is, thus, reanalyzed as trihedral phenomenon, each of whose places represents the important developmental stage in grammatical acquisition across languages.

3 The Underspecification of Features in Tense

3.1 Root Infinitives and Root Infinitive Analogues

To fully attain the adult syntax of complex NPs, the realization of the features that Tense is associated with is one of the properties children need to acquire. However, there is plenty of cross-linguistic evidence to show that the features in T are underspecified in the early grammar acquisition (Rizzi 1993/1994, Waxler 1994, Schütte and Waxler 1996, Hyams 2005, among others). A lot of researchers have offered interesting insights into the phenomenon of Root Infinitives (Rls) in early child language, e.g., the optional projection of Tense/Agreement (Waxler 1998), underspecification of Number P (Holmstra, Hyams and Becker 1997) or AspectP (Gavrusen 2003), and so on.

Rls are the non-finite forms in matrix contexts that children produce. Alongside the inflected forms, children speaking European languages around the age of two produce non-finite verb forms in matrix clauses as exemplified in (20).

(20) a. Eve sit floor (1;7) (Child English)
 b. Peter bal pækken (2;1) (Child Dutch)
 c. Dormir petit bébé (1;11) (Child French)
 d. sleep-INF little baby ‘A little baby sleeps.’ (Guasti 2004)

The phenomenon is also termed Optional Infinitives, and it is well known that there are some salient properties. One of them is Modal Reference Effect (Holmstra and Hyams 1998, among

1 Some of the RI properties are listed in (i).
 (i) a. Rls are optional: Rls occur side by side with fully inflected verbs. b. Rls are tenseless verbs in root contexts.
 c. Rls occur predominantly with null subjects. d. Rls generally do not occur in wh-questions.
 e. Rls occur in modal contexts (Modal Reference Effects [MREs]).
 f. Rls are restricted to event-denoting predicates (Eventivity Constraint).
 g. Rls are very rare in pro-drop languages. (Adopted from Deen 2002, Holmstra 2005, Salustri and Hyams 2003)
others. It is observed that the verbs that occur in this construction are typically the event-denoting verbs, and RIs receive modal interpretations, as shown in (21).

(21) a. Niekje buiten spelen.
Niekje outside play-INF ‘Niek (=speaker) wants to play outside.’

b. Papa ook boot maken
Papa also boat make-INF
‘Papa must also build a boat.’ or ‘I want Papa to build a boat, too.’

(Hoeckstra and Hyams 1998)

Then, do Japanese-speaking children go through the Root Infinitive stage? Murasugi, Fuji and Hashimoto (2007) and Hyams (2008) argue that there is cross-linguistic variation with respect to the non-finite forms, and children learning the [-bare stem] languages, whose verbal stem obligatorily requires the morpheme to be attached, do not go through the RI stage, but instead, they go through the stage of the Root Infinitives Analogues. It has been observed that children speaking languages whose verbs cannot stand by the independent stem acquire the verb inflections at a very early stage. According to this hypothesis, English, for example, takes a value [+ bare stem], as verbs can surface as bare stems. On the other hand, in such languages as Japanese, the parameter takes the opposite value, [-bare stem], because verbs cannot surface as bare stems. Children acquiring Japanese will learn the verb conjugations earlier than English speaking children because, given the Japanese setting of the parameter, there is no option of omitting the verb conjugations.

Murasugi, Nakatani and Fuji (2009a) further argue that those children acquiring [-bare stem] languages go through a Root Infinitive Analogues or a Surrogate Infinitive stage. Those children pick up the “surrogate forms of non-finite verbs,” or the verbs, which look like morphologically finite, but are in fact, infinitive (e.g. Circne 2004), attaching some morpheme to the verb stem. The surrogate form picked up by children varies across languages, and most of the linguistic varieties are grouped together under the stem parameter.

For instance, Italian- and Kuwaiti Arabic-speaking children employ imperative form as a surrogate form as in (22a).

(22) a. dammi! (1;10) (Italian Imperative)
give-to me ‘give it to me.’ (Salustri and Hyams 2003)

b. * Eh xalis (1;1-2.5) (Adult form: xalis-at (finish-3f)) (Arabic: Imperatives)
yes, finished ‘Yes, it is finished.’ (Aljenaie 2000)

According to Salustri and Hyams (2003, 2006), Italian-speaking children start producing imperatives with appropriate morphology before age two; the rate of imperatives is considerably higher for children than for adults. This is also the case in Kuwaiti Arabic (Aljenaie 2000). Aljenaie reports that children at one to two years of age typically produce verbs lacking the marking of present and past tense, but they never leave the form uninfluenced as it does not constitute a well-formed word, and choose another infix (22b), which looks like the omission of 3rd feminine suffix, is, in fact, homophonous with the masculine imperative form in the adult Kuwaiti Arabic.

In (26), the aspect morpheme is omitted, and part of the verb is even omitted. However, the
termination morpheme is correctly used.

As exemplified above, a lot of acquisition research has independently found that the very
early verb forms children produce are different from the adult forms. Under the present
framework, these interesting findings would be summarized as follows: The [-bare stem]
language speaking children, even around age one, know that verbs in their target languages
cannot surface as bare stems, and naturally and voluntarily pick up the most unmarked surrogate
form in adult grammar.

Japanese-speaking children go through the Root Infinitive Analogue stage, much like Turkish
and Korean, where the verbs are associated with /-ta/ (past tense) form in (27) (See Murasugi,
Fuji and Hashimoto 2007, Murasugi and Fuji 2008, 2009, Nakatani and Murasugi 2009,
Murasugi, Nakatani and Fuji 2009a, Nakatani and Murasugi 2010).

open-Past open-Past (I) want to / (You) open (the cabinet).'
wear-Past wear-Past (I) want to wear (the shoes) / (You) put (the shoes) on (me).
enter-Past enter-Past (I) want to / (You) put (this notebook in this bag).'
(Murasugi, Nakatani and Fuji 2009a)

In (27a), Yuuta, around one year of age, used the past tense verb form (V + ta), when he wanted
to open the cabinet or he wanted to ask his grandmother to open the cabinet. In this context, the
adult Japanese speakers use present form ake-ru or the imperative form ake-te, and the past tense
form should be employed for the past and/or perfect event. However, the child produced past
tense ta form for the meaning of volition, thereby showing the Modal Reference Effect, a typical
effect that Root Infinitives in general have. Similar examples are shown in (27b-c), and the parallel
findings are gained from the corpus analysis of Sumihare (CHILDES). The Root
Infinitive Analogues in Japanese are found in very young children around the age of one, much
earlier than Rs found in European languages, and the non-finite form is initially used 100% of
the time in a full range of environments. There is no correlation between null subjects and non-
finite verb forms in Japanese, unlike the European Rs (Murasugi, Fuji and Hashimoto 2007,
among others).

Nakatani and Murasugi (2010) argue that even within one language, multiple types of non-
finite forms may appear. Based on a longitudinal observation of a Japanese-speaking child (0:1-
2:3), they report that there are "bare" onomatopoeic verbs produced as Rs at around 1:5-1:8,
just at the time past tense verbs, ta-forms, are produced as Rs, and argue that
onomatopoeic verbs correspond to the very early non-finite bare verbs in English, Inukitut,
Nairobi Swahili and Malay (Swift and Allen 2002, Deen 2002, 2003, Nellitheos and
Manorohanta 2004). The onomatopoeic Rs also show the typical properties of Rs, e.g., the
Modal Reference Effects. The child frequently expresses volition and request by using
onomatopoeia.

(28) a. Patin patin [volition] (1:7) Intended meaning: 'I want to button up a jacket.'
b. Patin [volition] (1:7) Intended meaning: 'I want to fasten a snap on the doll.'

The Onset of Complex NPs in Child Production

c. Bubus [request] (1:6) (The child is held by his grandmother and points the
direction he wants to go) Intended meaning: 'Please take me there.'
d. Bibi bibi [request] (1:6) Intended meaning: 'Please zip the pouch open.'
e. Byuu byuu [volition] (1:7) (The child holds a pencil)
Intended meaning: 'I want to draw something.'

In (28a), Yuuta wants to button up a jacket, and produces the onomatopoeic expression patin
patin to express his volition. Likewise, in (28b), Yuuta utters patin when he tries to fasten a
snap on the doll. Similar examples are shown in (28c-e). In adult grammar, such bare onomatopoeia as
"shant!" meaning "You stand up straight!" also expresses a request.

Furthermore, Japanese, an agglutinating language, reveals that RIA is characterized as the
stage where the merger of V and T elements is not morphologically realized. In fact, Phillips
(1995) argues that the verb and the inflectional features are not syntactically joined (merged)
when Rs are produced. Murasugi and Fuji (2008), based on the corpus analysis of Sumihare (CHILDES),
argue for Phillips (1995), arguing that during the RI Analogue (RIA) stage, the merger of a verb with
inflection is not available in Japanese. They argue that even after the stage
where only Verb–ta form is employed (which is termed RIA stage), at the post-RIA stage, where
some inflected forms come to be employed at around 1:11, the child uses, for example, the
abbreviated aspectual or negative forms without making multiple head merge.

The evidence for the unavailability of two-step head merge at the post-RIA stage is elicited
from the analysis of the negative sentences. In adult Japanese, the negative marker -nai (not) is a
verbal predicate which itself carries finite Tense (Sano 2000), and to form the adult negative
predicates ki-te(i)-na-i or utawa-na-i, two- (or more) step head merge (V-Neg-T) is required.

(29) a. [Asp Neg] TP T
 [Asp Neg-] i
 V
 ki-te i
 V
 [negative triple]
 [negative triple]
 [negative triple]
 [negative triple]
 [negative triple]

b. [Asp Neg] TP T
 [Asp Neg-] i
 V
 Utawa-a
 [negative triple]
 [negative triple]
 [negative triple]
 [negative triple]

However, the child (Sumihare) at around 1:11-2:2, consistently produced the erroneous
negative sentences such as (30), without making the adult-like multiple application of merge.

(30) a. Tinbun ki-ta-nai yo (1:11) (Adult form: ki-te(i)-na-i)
newspaper come-Past-Neg Mood 'The newspaper hasn't come yet.'
b. MOT: Sekken-ga-te-ni tui-te-i ru karai nasai
soap-Nom hand-Dat put-Asp-Pres as wash Imperative
'Wash your hand. Some soap sticks on your hand.'
SUM: Tui-te-nai (1:11) (Adult form: tui-te(i)-na-i)
put-Past-Neg 'No, they do not stick (on my hand).'
c. Utaw-a-nai (2:0) (Adult form: utaw-a-nai)
sing-Pres-Neg 'Mommy doesn't sing a song.'

In these examples, the negative marker -nai is not merged with the priverbal form ki-te(i) or
utawa-i. Rather, -nai follows the full past-tensed verb ki-ta (came) in (30a) and tui-ta (stick-past)
in (30b). In (30c), *nai even attaches to the full present-tensed verb *uta-waruya. This would suggest that the structure of (30) in child Japanese would be something like (31), which is different from the ones in adult grammar (29a, b) in that NegP is located outside of TP.

(31) NegP

TP

VP

Neg

-nai

NP

ki-tu-si-uta

The productive errors Sumihara made for negation with different types of verbs would indicate that only one merger of a verb and inflection is available at around 1;11-2;0. Here, the negative morpheme -*nai* would be base-generated as an unanalyzed form, i.e., Neg (*-nai*) and T (*-i*) are not separated in the child grammar.

Murasugi and Fuji (2008), providing further support for the unavailability of two head merge inside the verbal projection at around 1;11-2;0 in the morphology of aspectual or mood forms, argue that only one-step merger of a verb and T(I) is available at the post RIA (Post-Non-Finite Verb) stage, at around 1;11. When children start producing the “verbal” elements, the verb and the inflection are not merged as independent syntactic categories. The whole V-ta form in Japanese RIA stage would be base-generated as an unanalyzed rote form as illustrated in (32).

(32) TP

VP

T

NP

V-ta (or onomatopoeia)

As for the reason regarding why Japanese-type languages have RIA's instead of RIs, the explanation given above applies as well. Cinque (2004) and Kawai (2006), for adult syntax, propose that there are non-finite “surrogate” verbs that look like finite verbs, and the surrogate forms of non-finite verbs are derived by an operation to make the verbal stems the well-formed morphological words in adult grammar of Salentino/ Serbo-Croatian, and Japanese, respectively. In fact, there is some evidence to show that the past-tense form (t-a form) that children pick up as RIA seems to be most unmarked among the possible surrogate forms in Japanese.3

Two conjuncts unspecified regarding Tense, for example, are conjoined by the verbal conjunct with -ta forms in (33a, b), and -t-a forms can be used for future as in (34a), and with irrealis meaning as well as shown in (34b).

2 There are a few correct negative sentences like (ia-b). The unanalyzed negative forms are stored as chunk (rote) in the child lexicon. The past tense form *na-katta* comes to be productively produced with various verbs after 2;2.

(i) Mie-nai *ne* (1;11)

(ii) Naki-ka *ne* (2;1) (Sumihara, CHILDES)

3 *see Neg Int "We cannot see (that)" not nearly come-Neg Int "(The train) does not come, does it?"

4 For example, see the analysis found in the pronoun paradigm hypothesis (Ripsoli 1994, 1995), Agent-Control Analysis (Budwig 1989), Topic Analysis (Syka 2009), Nominal Analysis (Penault 1995), and Agreement/Tense Omission Model (ATOM) (Schütze and Waxler 1996), and Radford (1999).
At the end of the first stage in the context of a non-NP subject, 96% of the genitive Case errors appear with the verbs or adjectives whose nominative and non-nominal forms are homophonous, which also provides a key to solve the problem regarding how children retreat from the error. A declarative T checks nominative -ga on the subject NP.

As in (39), nominative subjects, which appear with non-nominal forms, are allowed in simple sentences and NPs. Here, the Declarative T is compatible with C and N (D), and it checks nominative Case. In contrast, as in (40), genitive subjects are possible only in NPs with non-nominal forms. Here, the Adnominal T is compatible with only N (D) but not C, and it checks genitive.

S, M, and F (2009) explain the children’s erroneous genitive subjects and how children attain the adult grammar with three stages: Children know the structure inside TP, but not the external relation of T to N when they erroneously Case mark the subject with genitive. Furthermore, employing Murayama (1991) which argues that Japanese- and Korean-speaking children initially hypothesize that the pronominal sentential modifier in their language is CP (unlike their target grammar), rather than TP, S, M, and F (2009) argue that it is only after children learn that the sentential modifiers in adult Japanese have TP structure that the genitive Case errors are expected to disappear. At Stage I, where the erroneous genitive subject in non-NP contexts is produced, children mistakenly assume that Adnominal T is compatible with C, since default root clause is CP (Rizzi 1994). The structure children hypothesize at Stage I can be something like (41).
In contrast, as in (42), at Stage II where children producing genitive Case errors, children start producing CP sentential modifier, and overgenerating the complementizer no. Such children “mistakenly” set the value of the Relative Clause Parameter to CP, and allow the CP layer to be above TP. Children still hypothesize that TP headed by Adnominal T can be compatible with C.

When children find out that the structure of relative clauses is TP in adult Japanese, i.e., the Relative Clause Parameter is set, they enter into Stage III, where children acquire the adult way of the Case assignment system. Erroneous genitive subjects in sentences and overgeneration of the complementizer no in complex NPs are no longer observed. S, M and F (2009), thus, argue that the trigger of retracement from genitive Case errors is setting the value of the Relative Clause Parameter (from CP) to TP. Hence, the structure in child grammar at Stage III is the same as those in adult grammar as shown in (43).

(43) Stage III

At this point, children have acquired that Adnominal T can be compatible only with N, but never with C.

This hypothesis is further supported by the corpus analysis of Jun (0.6-3.8, Ishii 2004 (CHILDES)) (S, M and F 2009). Jun produced erroneous genitive Subjects from 2.2 to 2.9. Jun made errors like (44) before the first production of relative clauses. Then, he frequently produced erroneous CP relative clauses such as (45) from 2.8 to 2.10. It was only around 2;10 when his (adult-like) TP relative clauses increased as in (46).

(44) Koori *-no ippai ar-u yan (Jun, 2;8) (Adult form: Koori-ga)

ice-Gen lots of exist-Pres Particle ‘There is lots of ice.’ (S, M and F 2009)

(45) Nimotu noseten *-no torakkuy a kore (Jun, 2;9)

load carrying Comp truck Particle this ‘This is the truck that is carrying a load.’ (S, M and F 2009)

4 Conclusion

This paper described five types of errors that Japanese-speaking children typically produce before they acquire the structure of complex NPs, and attempted to provide theoretical explanations for them. Children at around age one start merging elements, initially with a smaller syntactic category, i.e., a pronoun no, and also start producing the first verb forms, or Root Infinitives/ Root Infinitive Analogues. The verb form Japanese-speaking children consistently use at a very early stage is the surrogate form (infinitive form), -ta-form. Children, even at one year old, know whether or not the stem of the verbs in their mother tongue can stand alone, and children speaking languages whose stem cannot stand alone attach the default morpheme on the stem as the Root Infinitive Analogues. Later, at around the age of two, children acquire the syntactic categories, and the features and the actual phonetic realization of the categories. Then, they sometimes map the visible/sensible properties categorized as adjectives in adult Japanese, and misclassify them as nouns, thereby over-marking the “adjectives (nouns in child grammar)” with genitive Case marker no. The erroneous genitive Subjects are also produced due to the underspecification of Tense, just like European Root Infinitives. It is only after children acquire the structure of relative clauses that they retreat from the genitive Case errors.

The theoretical explanations given here would be rewritten with the different terminologies in the development of linguistic theory. However, the description and the generalization we drew here would hopefully remain. Whatever linguistic theory we may construct, the intermediate stages are composed of a series of grammatical states, and they would reflect the possible linguistic variations available in human language. The syntactic errors children make would reflect the properties of the language faculty endowed in all human beings.
Selected References

Murasugi, Keiko, Chisato Fuji, and Tomoko Hashimoto. 2007. What acquired later in an agglutinative language. Paper presented at the GLOW in Asia VI, Chinese University of Hong Kong, December 27th.

murasugi@nanzan-u.ac.jp